首页> 外文学位 >Design of a High-Speed Crank-Slider Valve for use in Hydraulic Switch-Mode Systems with Experimental Validation in a Pressure Boost Converter Circuit.
【24h】

Design of a High-Speed Crank-Slider Valve for use in Hydraulic Switch-Mode Systems with Experimental Validation in a Pressure Boost Converter Circuit.

机译:设计用于液压开关模式系统的高速曲柄滑阀,并在升压转换器回路中进行了实验验证。

获取原文
获取原文并翻译 | 示例

摘要

Fluid power offers the benefits of high power density, high force potential, and high-speed precision control. To achieve variable power demand, systems often implement metering control, which results in heat dissipation and low overall efficiency. Improved efficiency can be obtained with the use of a variable displacement pump, adding cost, complexity, and size compared to a fixed displacement pump. Switch-mode hydraulic circuits, analogous to switch-mode power electronics, provide alternative control topologies that rely on switching between efficient on and off states. A challenge in realizing these circuits is the need for a high-speed valve with a demanding set of requirements. These requirements include fast transition time, high frequency switching, high flow rates, low energy losses, and a variable duty cycle. The work presented includes the design and modeling of valve that meets these requirements, experimental testing of the valve prototype, and experimental demonstration of the prototype in a pressure boost converter. The valve architecture consists of a dual spool design actuated from a common crank-shaft by two 4-bar crank-slider mechanisms. The valve completes two switching cycles per crank-shaft revolution and the variable duty cycle is achieved by phase shifting one crank arm relative to the other. The valve design constraints included a switching frequency up to 120 Hz, a transition ratio of 5% of the cycle period, and a flow rate of 22.8 lpm at a 0.6 MPa pressure drop. The experimental validation of the valve consisted of two quasi-static tests and one transient test. The first test determined the valve effective area as a function of crank-shaft position. The experimental results agreed well with the model resulting in a 3% variation in transition time and a 13.3% variation in valve overlap. The second test measured the valve leakage which matched the model in shape and order of magnitude. The third test measured the input torque. At low speeds, due to binding forces in the revolute joints the model showed poor agreement, however at higher speeds, where inertial forces dominate, agreement improved significantly. The valve prototype was further validated with experimental demonstration in a pressure boost converter. The converter utilized a rigid tube as the inductive element and transient testing was completed at six different duty cycles, ranging from 0.2--0.9. The system demonstrated boost ratio capabilities of 1.08--2.06 with a general trend of higher boost ratios at lower duty cycles. The system efficiencies ranged from 19--62% with decreasing efficiencies at lower duty cycles. Overall, the valve performed well in the system and successfully demonstrated a boost ratio over two. This high-speed valve enables switch-mode circuit studies that can improve efficiency in future work, allowing switch-mode circuits to be a viable control method for hydraulic systems.
机译:流体动力具有高功率密度,高受力潜力和高速精确控制的优点。为了实现可变的功率需求,系统通常执行计量控制,这导致散热和较低的整体效率。使用可变排量泵可以获得更高的效率,与固定排量泵相比,增加了成本,复杂性和尺寸。类似于开关式电力电子设备,开关式液压回路提供了依赖于有效的通断状态之间切换的替代控制拓扑。实现这些电路的挑战是需要有一系列苛刻要求的高速阀。这些要求包括快速转换时间,高频开关,高流量,低能量损耗和可变占空比。提出的工作包括满足这些要求的阀门的设计和建模,阀门原型的实验测试以及增压转换器中原型的实验演示。气门结构包括双滑阀设计,该滑阀设计通过两个4杆曲柄滑块机构从一个共同的曲轴驱动。该阀每曲轴旋转完成两个切换循环,并且通过将一个曲柄臂相对于另一个曲柄臂相移来实现可变占空比。阀门的设计限制包括高达120 Hz的开关频率,循环周期的5%的过渡比以及在0.6 MPa压降下的流量为22.8 lpm。阀门的实验验证包括两个准静态测试和一个瞬态测试。第一次测试确定了阀的有效面积与曲轴位置的关系。实验结果与模型非常吻合,导致过渡时间变化了3%,瓣膜重叠变化了13.3%。第二项测试测量的阀门泄漏在形状和数量级上与模型匹配。第三次测试测量了输入扭矩。在低速时,由于旋转关节中的约束力,该模型显示出较差的一致性,但是在惯性力占主导的较高速度下,该一致性显着提高。阀门原型通过升压转换器中的实验演示得到了进一步验证。该转换器使用刚性管作为电感元件,并且在0.2--0.9的六个不同占空比下完成了瞬态测试。该系统展示了1.08--2.06的升压比能力,并在较低占空比下具有更高升压比的总体趋势。系统效率在19--62%的范围内,并且在较低占空比下效率不断降低。总体而言,该阀在系统中表现良好,并成功展示出超过2的升压比。这种高速阀可进行开关模式回路研究,从而提高未来工作的效率,从而使开关模式回路成为液压系统的可行控制方法。

著录项

  • 作者

    Koktavy, Shaun E.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mechanical engineering.
  • 学位 M.S.M.E.
  • 年度 2016
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号