首页> 外文学位 >Junction mixing scanning tunneling microscopy.
【24h】

Junction mixing scanning tunneling microscopy.

机译:结混合扫描隧道显微镜。

获取原文
获取原文并翻译 | 示例

摘要

Research in the fields of nanotechnology and nanoelectronics is burgeoning. As nanodevices shrink in size and subsequently electronic operations on these length scales accelerate, new techniques will be required to study and characterize these devices. Techniques with atomic scale spatial resolution and femtosecond time resolution will soon be necessary. Looking to conventional scanning probe microscopy, the scanning tunneling microscope (STM) already possesses sufficient spatial resolution to image any feature current nanotechnologies can produce (STMs are used to build the worlds smallest nano-devices). Similarly ultrafast pump/probe optical techniques exist, which can resolve femtosecond dynamics. The goal of this research is to wed ultrafast optical techniques with the scanning tunneling microscope to produce an aggregate probe with the ability to image nanoscale dynamics. This goal has been achieved using a technique known as junction mixing STM (JM-STM).; Initial work using the junction mixing technique was performed to demonstrate the detection of a time-resolved signal using a home built scanning tunneling microscope. This work demonstrated an order of magnitude improvement in time resolution over previous experiments by utilizing ion implanted gallium arsenide substrates to generate fast electrical pulses. This work decisively demonstrated the STM tunnel junction as the origin of the measured time resolved signal, a crucial requirement in maintaining STM spatial resolution.; Following these experiments, new test structures were designed to demonstrate combined STM spatial resolution with picosecond time resolution. Measurements were made on small titanium dots patterned onto a gold transmission line. The titanium provided electronic contrast to the gold, so that our time resolved signal was modulated as we scanned our STM across the titanium/gold interface. Combined 20 ns-20 ps spatio-temporal resolution was achieved, the first direct confirmation that time-resolved STM was possible.; These experiments were numerically reproduced using a lumped element circuit model of the non-linear tunnel junction in parallel with STM geometrical capacitance. Results from this model suggest the junction mixing technique should be able to yield time resolution in the hundreds of femtoseconds while maintaining atomic spatial resolution.; To demonstrate the operation of this junction mixing technique efforts were directed to designing and building a low temperature high vacuum STM and a home built Ti/Sapph laser system. These systems are being incorporated into a new low temperature high vacuum time resolved scanning tunneling microscope.
机译:纳米技术和纳米电子领域的研究正在蓬勃发展。随着纳米器件尺寸的缩小以及随后在这些长度尺度上的电子操作的加速,将需要新技术来研究和表征这些器件。具有原子级空间分辨率和飞秒时间分辨率的技术很快将成为必需。展望传统的扫描探针显微镜,扫描隧道显微镜(STM)已经具有足够的空间分辨率,可以成像当前纳米技术可以产生的任何特征(STM用于构建世界上最小的纳米设备)。类似地,也存在可以解决飞秒动力学问题的超快泵浦/探针光学技术。这项研究的目的是使用扫描隧道显微镜将超快光学技术结合起来,以生产出能够对纳米级动力学成像的聚集探针。使用称为结混合STM(JM-STM)的技术已经实现了该目标。进行了使用结混合技术的初步工作,以证明使用家用扫描隧道显微镜对时间分辨信号的检测。通过利用离子注入砷化镓衬底产生快速电脉冲,这项工作证明了时间分辨率比以前的实验提高了一个数量级。这项工作决定性地证明了STM隧道结是所测得的时间分辨信号的起源,这是维持STM空间分辨率的关键要求。在进行这些实验之后,设计了新的测试结构,以证明STM空间分辨率与皮秒时间分辨率相结合。在图案化到金传输线上的小的钛点上进行测量。钛与金形成了电子对比,因此当我们跨钛/金界面扫描STM时,调制了我们的时间分辨信号。组合获得了20 ns-20 ps的时空分辨率,这是第一个直接证实时间分辨STM是可能的。这些实验使用非线性隧道结的集总元件电路模型与STM几何电容并联进行数值复制。该模型的结果表明,结混合技术应该能够在数百飞秒内产生时间分辨率,同时保持原子空间分辨率。为了证明这种结混合技术的操作,人们致力于设计和构建低温高真空STM和自制的Ti / Sapph激光系统。这些系统被并入新的低温高真空时间分辨扫描隧道显微镜。

著录项

  • 作者

    Steeves, Geoffrey Mark.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

  • 入库时间 2022-08-17 11:47:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号