首页> 外文学位 >A CMOS wireless interconnect system for multigigahertz clock distribution.
【24h】

A CMOS wireless interconnect system for multigigahertz clock distribution.

机译:用于千兆赫兹时钟分配的CMOS无线互连系统。

获取原文
获取原文并翻译 | 示例

摘要

As the clock frequency and chip size of high-performance microprocessors increase, it becomes increasingly difficult to distribute signals across the chip, due to increasing propagation delays and decreasing allowable clock skew. This dissertation presents the design, implementation, and feasibility of a wireless interconnect system for clock distribution. The system consists of transmitters and receivers with integrated antennas communicating via electromagnetic waves at the speed of light. A global clock signal is generated and broadcast by the transmitting antenna. Clock receivers distributed throughout the chip detect the signal using integrated antennas, amplify and divide it down to a local clock frequency, and buffer and distribute these signals to adjacent circuitry.; First, the design and implementation of CMOS receiver circuitry used for wireless interconnects is presented. A design methodology is developed for CMOS low not amplifiers and demonstrated with a 0.8-μm, 900-MHz amplifier achieving a 1.2-dB noise figure and a 14.5-dB gain. Amplifiers are also demonstrated at 7.4, 14.4, and 23.8 GHz, using 0.25-, 0.18-, and 0.10-μm technologies, respectively. A design methodology based on injection locking is developed for CMOS frequency dividers, and a programmable divider which limits clock skew is presented. Dividers operating up to 10, 15.8, and 18.8 GHz are demonstrated, implemented in 0.25-, 0.18-, and 0.10-μm technologies, respectively.; Results for the overall wireless interconnect system are then presented. System requirements (gain, matching, noise, linearity) for wireless clock distribution are derived, including specifications for signal-to-noise ratio versus clock jitter, and amplitude mismatch versus clock skew. Wireless interconnect systems are demonstrated for the first time using on-chip antenna pairs, clock receivers, and clock transmitters. The interconnects operate across 3.3 mm at 7.4 GHz, using a 0.25-μm technology, and across 6.8 mm at 15 GHz, using a 0.18-μm technology. Using the 6.8-mm, 15-GHz interconnect, a 25-ps clock skew and 6.6-ps peak jitter have been measured at 1.875 GHz for two receivers separated by ∼3 mm. Finally, the wireless interconnect system is analyzed in terms of power dissipation, synchronization, process variation, latency, and area. These results indicate the feasibility of an intra-chip wireless interconnect system using integrated antennas.
机译:随着高性能微处理器的时钟频率和芯片尺寸的增加,由于传播延迟增加和允许的时钟偏斜减小,越来越难以在整个芯片上分配信号。本文介绍了一种用于时钟分配的无线互连系统的设计,实现和可行性。该系统由带有集​​成天线的发射器和接收器组成,这些集成天线通过电磁波以光速通信。全局时钟信号由发送天线生成并广播。分布在整个芯片上的时钟接收器使用集成天线检测信号,将其放大并分频到本地时钟频率,然后将这些信号缓冲并分配给相邻电路。首先,介绍了用于无线互连的CMOS接收器电路的设计和实现。针对CMOS低非放大器开发了一种设计方法,并以0.8μm,900MHz放大器进行了演示,该放大器可实现1.2dB的噪声系数和14.5dB的增益。还分别使用0.25-,0.18-和0.10-μm技术在7.4、14.4和23.8 GHz上演示了放大器。针对CMOS分频器开发了一种基于注入锁定的设计方法,并提出了一种可限制时钟偏斜的可编程分频器。演示了工作于10、15.8和18.8 GHz的分频器,分别在0.25、0.18和0.10μm技术中实现。然后介绍了整个无线互连系统的结果。得出了无线时钟分配的系统要求(增益,匹配,噪声,线性),包括信噪比与时钟抖动,幅度失配与时钟偏斜的规范。首次使用片上天线对,时钟接收器和时钟发射器演示了无线互连系统。互连使用0.25μm技术在7.4 GHz的3.3 mm上工作,使用0.18μm技术在15 GHz的6.8 mm上工作。使用6.8毫米,15 GHz互连,对于两个间隔约3 mm的接收器,在1.875 GHz处测得25 ps的时钟偏斜和6.6 ps的峰值抖动。最后,从功耗,同步,过程变化,等待时间和面积方面分析了无线互连系统。这些结果表明使用集成天线的芯片内无线互连系统的可行性。

著录项

  • 作者

    Floyd, Brian A.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号