首页> 外文学位 >Modeling the transport and fate of hydrophobic organic chemicals in a fluvial system during resuspension events.
【24h】

Modeling the transport and fate of hydrophobic organic chemicals in a fluvial system during resuspension events.

机译:在重悬事件期间,对河流系统中疏水有机化学物质的运输和命运进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Contaminated sediment resuspension in fluvial systems and subsequent release of hydrophobic organic compounds (HOCs) from resuspended sediments poses an exposure risk to rivers and to the lake or reservoir to which they are tributary. The accuracy and reliability of transport and fate models for predicting the impact of this phenomenon are greatly affected by the formulation of two critical mechanisms: sediment resuspension and phase partitioning. This dissertation will examine the assumption in most models that phase artitioning is defined by a local equilibrium relationship. It does so by incorporating a non-equilibrium sorption sub-model into a whole system fate and transport modeling framework.; In this study, non-equilibrium phase partitioning was described using a two-compartment sorption kinetic model. This kinetic sorption model assumed that sorbed PCBs can be found in one of two independent compartments: one undergoes faster adsorption or desorption and is conceptually related to the outer surface of particles, while the other undergoes slower adsorption or desorption and is related to the inner porous structure of particles. The interaction between the dissolved phase and each sorbed phase is conceptualized as a reversible first-order reaction.; This sub-model for sorption kinetics was then incorporated into a full sediment and PCB transport model. The model was first used to evaluate the transport of PCBs in a hypothetical river and then applied to a typical Great Lakes tributary system—the Buffalo River of western New York State. The application demonstrated that, for a typical flow-induced resuspension event, resuspended sediments either redeposited or were exported from the river long before their sorbed PCBs reached phase equilibrium in the surrounding water column. Using a local equilibrium partitioning assumption in place of sorption kinetics submodel computed higher water column dissolved phase PCB exposure and export from a river. Sorption kinetics, spatially-variable sediment resuspension, and resuspended sediment deposition rates all combine with the physical and hydraulic characteristics of the fluvial system under investigation in determining the phase partitioning and export of PCBs from that system during a sediment resuspension event. The analysis of several events with different flow conditions and for PCB congeners with different partitioning properties demonstrated these relationships.
机译:受污染的沉积物在河流系统中的重悬以及随后从重悬的沉积物中释放的疏水性有机化合物(HOC)构成了河流,河流及其支流所在的湖泊或水库的暴露风险。两种关键机制的形成极大地影响了预测这种现象影响的运输模型和命运模型的准确性和可靠性:沉积物再悬浮和相分配。本文将研究大多数模型中的假设,即相位分配是由局部平衡关系定义的。通过将非平衡吸附子模型合并到整个系统的命运和运输模型框架中来实现。在这项研究中,使用两室吸附动力学模型描述了非平衡相分配。该动力学吸附模型假设吸附的PCB可以在两个独立的隔室之一中找到:一个进行较快的吸附或解吸,并且在概念上与颗粒的外表面相关,而另一个进行较慢的吸附或解吸,并且与内部多孔相关。颗粒的结构。溶解相和每个吸附相之间的相互作用被概念化为可逆的一级反应。然后将这个吸附动力学子模型整合到完整的沉积物和PCB迁移模型中。该模型首先用于评估假想河中多氯联苯的迁移,然后应用于典型的大湖支流系统-纽约州西部的布法罗河。该应用表明,对于典型的流量诱发的重悬事件,重悬的沉积物在被吸附的多氯联苯在周围水柱中达到相平衡之前很久就重新沉积或从河流中排出。使用局部平衡分配假设代替吸附动力学子模型,计算出较高的水柱溶解相PCB暴露量并从河流中导出。吸附动力学,空间可变的泥沙重悬和泥沙重悬速率都与正在研究的河流系统的物理和水力特征相结合,以确定泥沙重悬过程中多氯联苯的相分配和从该系统中的输出。对不同流动条件下的几个事件以及具有不同分配特性的PCB同类物的分析证明了这些关系。

著录项

  • 作者

    Song, Jieyuan.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Environmental.; Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;环境科学基础理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号