首页> 外文学位 >Distributed Algorithm and Pricing Strategy for Resource Allocation and Revenue Maximization in Communication Networks.
【24h】

Distributed Algorithm and Pricing Strategy for Resource Allocation and Revenue Maximization in Communication Networks.

机译:用于通信网络中资源分配和收益最大化的分布式算法和定价策略。

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of communication networks and services, design of distributed algorithm for resource allocation in wired and wireless networks has attracted more and more research interests in recent years. Different from many technique-based centralized algorithms, pricing-based distributed algorithm exploits economic-driven behaviors of network users and thus is more transparent and incentive-compatible. A typical example is that pricing takes the form of "shadow price" to indicate the scarcity of limited resource and thus generates an efficient allocation distributedly. In this thesis, we study two applications of pricing scheme (and the corresponding distributed algorithm design) in communication networks, namely, (i) distributed resource allocation in Dynamic Spectrum Access (DSA) networks, and (ii) revenue maximization for Internet Service Providers (ISPs) with limited capability of utility-extraction.;Facing with the severe problem of spectrum scarcity, the concept of dynamic spectrum access has been proposed to tackle inefficiency of the static spectrum management policy by leveraging a secondary spectrum utilization. In spite of its simple objective, implementation of DSA networks is much more challenging. The past decade has witnessed a joint effort from engineering, economics, and regulation communities on DSA networks research. By envisioning different capabilities of DSA networks, different models, namely, the Open Sharing model, the Hierarchical Access model, and the Dynamic Exclusive Usage model, have been proposed. In the first part of this thesis, we first study resource allocations (mainly the rate and power allocations) for DSA networks based on these different models.;First, based on the Dynamic Exclusive Usage model, we study the joint pricing and power allocation for DSA networks with the Stackelberg game model. Specifically, Primary User (PU) has the power control flexibility and is willing to share its channel with Secondary User (SU) to obtain extra revenue by charging the cochannel interference. In response, SU pays the interference cost to obtain transmission opportunity. Pricing has two purposes in our model, namely, (i) to motivate PU's channel sharing and (ii) to motivate SU's efficient utilization of PU's channel. Because of its Quality of Service (QoS) requirement, PU faces a tradeoff between charging SU and consuming its own power cost. We quantify the benefits that PU and SU can obtain from the sharing model and derive the stability condition for the sharing model. We further analyze two extensions. The first extension is the single PU multiple SUs scenario, where PU allows multiple SUs to share its channel simultaneously with the objective of revenue maximization. The second extension is the multiple PUs multiple SUs scenario, where each PU can only share its channel with one SU (and vice versa). Our objective is to maximize the entire network welfare by matching PUs and SUs distributedly.;Second, based on the spectrum underlay approach of the Hierarchical Access model, we study the distributed multi-channel power allocation for DSA networks with QoS guarantee. By exploiting the Interference Temperature (IT) metric, we model this problem as a noncooperative power demand game with a coupled strategy space to address both PUs' interference constraints and SUs' QoS requirements. We analyze the properties of Nash Equilibrium (N.E.) of our proposed game and propose a distributed algorithm to find the N.E. Our distributed algorithm is based on a layered structure, where PUs and SUs first separately update their dual prices, and then all SUs form a power demand subgame. By incorporating the dual prices, each SU's power demand is both interference-aware and QoS-aware.;In the first part of this thesis, we mainly use pricing to motivate certain "desired" network performance in DSA networks, i.e., the efficient channel sharing between PUs and SUs, and the QoS-aware and interference-aware power demand of SUs. In the second part of this thesis, we focus on ISPs' revenue maximization. Specifically, pricing serves as a bridge transferring customer's utility into ISP's revenue. Practical conditions, however, limit ISP's capability of utility-extraction and thus result in ISP's revenue loss. We study two of these factors, namely, (i) single ISP with"time-constrained" pricing strategy, and (ii) multiple ISPs inter-charging in a two-sided market. (Abstract shortened by UMI.)
机译:随着通信网络和服务的迅速发展,近年来,有线和无线网络中用于资源分配的分布式算法的设计吸引了越来越多的研究兴趣。与许多基于技术的集中式算法不同,基于定价的分布式算法利用了网络用户的经济驱动行为,因此更加透明和激励兼容。一个典型的例子是定价采取“影子价格”的形式,以表示有限资源的稀缺性,从而分散地产生有效的分配。在本文中,我们研究了定价方案(以及相应的分布式算法设计)在通信网络中的两种应用,即(i)动态频谱访问(DSA)网络中的分布式资源分配,以及(ii)Internet服务提供商的收益最大化(ISP)的公用事业提取能力有限。面对严重的频谱稀缺问题,提出了动态频谱访问的概念,以通过利用二次频谱利用来解决静态频谱管理策略的低效率问题。尽管目标简单,但DSA网络的实施更具挑战性。在过去的十年中,工程,经济学和法规界共同致力于DSA网络研究。通过设想DSA网络的不同功能,提出了不同的模型,即开放共享模型,分层访问模型和动态排他使用模型。在本文的第一部分中,我们首先基于这些模型研究了DSA网络的资源分配(主要是速率和功率分配)。首先,基于动态专有使用模型,我们研究了DSA网络的联合定价和功率分配。 DSA与Stackelberg游戏模型联网。具体来说,主要用户(PU)具有功率控制的灵活性,并愿意与辅助用户(SU)共享其信道,以通过收取同信道干扰来获得额外收入。作为响应,SU支付干扰成本以获得传输机会。定价在我们的模型中具有两个目的,即(i)激励PU的频道共享和(ii)激励SU高效利用PU的频道。由于其服务质量(QoS)要求,PU面临着在SU充电和消耗自身电力成本之间进行权衡的问题。我们量化了PU和SU可以从共享模型中获得的收益,并得出了共享模型的稳定性条件。我们进一步分析两个扩展。第一个扩展是单个PU多个SU场景,其中PU允许多个SU同时共享其信道,以实现收入最大化。第二个扩展是多个PU多个SU场景,其中每个PU只能与一个SU共享其信道(反之亦然)。我们的目标是通过分布式地匹配PU和SU来最大化整个网络的利益。第二,基于分层访问模型的频谱底层方法,研究具有QoS保证的DSA网络的分布式多信道功率分配。通过利用干扰温度(IT)度量,我们将此问题建模为具有耦合策略空间的非合作电力需求博弈,以解决PU的干扰约束和SU的QoS要求。我们分析了我们提出的游戏的纳什均衡(N.E.)的属性,并提出了一种分布式算法来找到N.E.我们的分布式算法基于分层结构,在这种结构中,PU和SU首先分别更新其双重价格,然后所有SU组成一个电力需求子游戏。通过合并双重价格,每个SU的功率需求既具有干扰意识又具有QoS意识。在本文的第一部分,我们主要使用定价来激励DSA网络中某些“所需”的网络性能,即有效信道。 PU和SU之间的共享,SU的QoS感知和干扰感知功率需求。在本文的第二部分,我们将重点讨论ISP的收入最大化。具体来说,定价是将客户的效用转移到ISP收入的桥梁。但是,实际情况限制了ISP进行实用程序提取的能力,从而导致ISP的收入损失。我们研究了其中两个因素,即(i)具有“时间受限”定价策略的单个ISP,以及(ii)双向市场中的多个ISP互收费用。 (摘要由UMI缩短。)

著录项

  • 作者

    Wu, Yuan.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号