首页> 外文学位 >Synthesis and characterization of alkali/alkaline earth-doped fiber optic silica preforms.
【24h】

Synthesis and characterization of alkali/alkaline earth-doped fiber optic silica preforms.

机译:碱/碱土掺杂光纤二氧化硅预制棒的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

The search for an ultra-low loss optical fiber has been driven by the discovery that certain multicomponent glasses possessed lower Rayleigh scattering losses than silica. Typically, these glasses cannot be employed in fiber optic applications because they are fabricated by conventional melting and processing techniques that introduce large amounts of impurities into the materials. High purity processing techniques such as chemical vapor deposition are required to truly realize the potential of these glasses as fiber optic materials.; The Modified Chemical Vapor Deposition (MCVD) process was employed in the thesis work because of the flexibility and species confinement available with this processing method. The multicomponent glass compositions investigated in the thesis work include: Na2O-Al2O3-SiO 2, CaO-Al2O3, & MgO-Al2O3 -SiO2. Novel vapor delivery approaches, based on the current organometallic and chloride vapor delivery of rare earth metals, were devised to fabricate the multicomponent glasses evaluated in this work. Thermodynamic data were used to predict the feasibility of the MCVD processing of the glasses. Initial work on the Na2O-Al2O3-SiO2 system was unsatisfactory. The minimal amounts, 0.40 mol%, of sodium achievable in doped preforms proved that the Na2OAl2O 3-SiO2 system could not be adequately synthesized by MCVD processing. However, the moderately high dopant levels, 1–5 mol% CaO & MgO, achieved in the MCVD fabrication of CaO-Al2O3-SiO 2 & MgO-Al2O3-SiO2, demonstrated the suitability of these latter systems as fiber optic materials.; The first successful MCVD fabrication and fiberization of the alkaline earth doped silica glasses achieved in this thesis work represents a milestone in ultra-low loss glass research. The modification of the silica glass structure with minor dopant levels, 10 mol%, resulted in noticeable changes in the optical properties of the glass. The CaO-Al2O3-SiO 2 glass system produced waveguide properties superior to the current GeO2-SiO2 glass fiber including a smooth index profile, improved ability to tailor the index profile, comparable scattering losses, and a rare earth host glass with enhanced solubility. The MgO-Al2O 3-SiO2 possessed lower OH absorption at 1.39 μm than the Rutgers GeO2-SiO2 glass fiber due to the dampening of the fundamental OH vibration. The demonstration of alkaline earth aluminosilicate glass compositions as viable optical fiber compositions offers many areas of opportunity for future applications.
机译:寻找超低损耗光纤的动力是发现某些多组分玻璃的瑞利散射损耗比二氧化硅低。通常,这些玻璃不能用于光纤应用中,因为它们是通过将大量杂质引入材料中的常规熔化和加工技术制成的。要真正实现这些玻璃作为光纤材料的潜力,就需要诸如化学气相沉积等高纯度加工技术。由于该处理方法具有灵活性和种类限制,因此在论文工作中采用了改进的化学气相沉积(MCVD)工艺。本文研究的多组分玻璃成分包括:Na 2 O-Al 2 O 3 -SiO 2 ,CaO-Al 2 O 3 和MgO-Al 2 O 3 -SiO 2 < / sub>。基于当前稀土金属的有机金属和氯化物蒸气的输送,设计了新颖的蒸气输送方法,以制造在这项工作中评估的多组分玻璃。使用热力学数据来预测玻璃的MCVD处理的可行性。 Na 2 O-Al 2 O 3 -SiO 2 系统的初始工作不能令人满意。在掺杂的预成型坯中可达到的最小钠含量<0.40 mol%,证明Na 2 OAl 2 O 3 -SiO MCVD处理不能充分合成2 系统。然而,在MCVD中制备CaO-Al 2 O 3 -SiO 2 <时,达到了1-5 mol%CaO和MgO的中等高掺杂水平。 / sub>和MgO-Al 2 O 3 -SiO 2 ,证明了后面这些系统作为光纤材料的适用性。这项工作成功完成了碱土金属掺杂石英玻璃的首次MCVD制造和纤维化,这是超低损耗玻璃研究的一个里程碑。小于10 mol%的少量掺杂剂对石英玻璃结构的改性导致玻璃的光学性能发生明显变化。 CaO-Al 2 O 3 -SiO 2 玻璃系统产生的波导性能优于当前的GeO 2 - SiO 2 玻璃纤维,包括光滑的折射率分布,改进的折射率分布调整能力,可比的散射损耗以及具有增强的溶解度的稀土基质玻璃。与Rutgers GeO 2 相比,MgO-Al 2 O 3 -SiO 2 在1.39μm处具有较低的OH吸收。 -SiO 2 玻璃纤维由于基本OH振动的衰减。碱土金属铝硅酸盐玻璃组合物作为可行的光纤组合物的展示为将来的应用提供了许多机会。

著录项

  • 作者

    Homa, Daniel Scott.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号