首页> 外文学位 >Uniaxial-stretched laser punched scaffold for tendon tissue engineering
【24h】

Uniaxial-stretched laser punched scaffold for tendon tissue engineering

机译:单轴拉伸激光打孔支架,用于肌腱组织工程

获取原文
获取原文并翻译 | 示例

摘要

Scaffold-based tendon tissue engineering offers a promising alternative to tackle the unmet needs. This study incorporates both uniaxial stretching and laser punching techniques to fabricate a bioresorbable tendon scaffold. The scaffold was designed to be three-dimensional tubular shape with micro patterns on the surface, with the aim to achieve cell alignment. The whole fabrication process involved two roll milling, heat pressing, laser punching as well as uniaxial stretching, to process poly (epsilon-caprolactone) (PCL) pellets into tubular tendon scaffold (TTS). Result showed that TTS at a draw ratio of 4 presented distinct ridges and grooves, with optimal morphological parameters that was favorable for cell alignment. Higher crystallinity was observed on TTS as compared to the raw material, attributed to the recrystallization of PCL after uniaxial stretching. Nevertheless, polydispersity index was maintained, suggesting that a slower degradation rate would be observed, while retaining the hydrolytic degradation behaviour. As a result of strain hardening, TTS was mechanically stronger than the un-stretched sample. From the in-vitro study, TTS exhibited excellent biocompatibility with 100 % cell viability throughout the period of cell culturing in comparison with the control. Phalloidin/DAPI staining result demonstrated that TTS exhibited cell alignment. This study demonstrated that TTS possessed excellent biocompatibility, while promoting cell alignment for tendon tissue engineering applications. On the whole, TTS was demonstrated as a promising alternative to replace the conventional approaches of restoring tendon function.
机译:基于支架的肌腱组织工程为解决未满足的需求提供了有希望的替代方案。这项研究结合了单轴拉伸和激光冲压技术来制造生物可吸收的肌腱支架。支架设计为三维管状,表面具有微细图案,旨在实现细胞排列。整个制造过程包括两次辊磨,热压,激光冲压以及单轴拉伸,以将聚(ε-己内酯)(PCL)颗粒加工成管状腱支架(TTS)。结果表明,拉伸比为4的TTS表现出明显的脊和槽,具有最佳的形态学参数,有利于细胞排列。与原料相比,在TTS上观察到更高的结晶度,这归因于单轴拉伸后PCL的重结晶。然而,保持了多分散指数,这表明将观察到较慢的降解速率,同时保留了水解降解行为。应变硬化的结果是,TTS在机械上比未拉伸的样品强。通过体外研究,与对照相比,TTS在整个细胞培养期间均表现出出色的生物相容性,细胞活力为100%。鬼笔环肽/ DAPI染色结果表明TTS表现出细胞排列。这项研究表明TTS具有出色的生物相容性,同时促进了肌腱组织工程应用中的细胞排列。总体而言,TTS被证明是替代恢复肌腱功能的传统方法的有希望的替代方法。

著录项

  • 作者

    Na, Lam Ruey.;

  • 作者单位

    National University of Singapore (Singapore).;

  • 授予单位 National University of Singapore (Singapore).;
  • 学科 Biomedical engineering.
  • 学位 M.Eng.
  • 年度 2016
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:46:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号