首页> 外文学位 >Resonant cavity-enhanced photodiodes for optical communications.
【24h】

Resonant cavity-enhanced photodiodes for optical communications.

机译:用于光通信的谐振腔增强型光电二极管。

获取原文
获取原文并翻译 | 示例

摘要

Resonant cavity enhanced (RCE) photodiodes (PD) are promising candidates to overcome the bandwidth-efficiency product (BWE) limitation, for applications in optical communications and interconnects where high-speed, high-efficiency photodetection is desirable. In such structures, electrical properties of the photodetector remain mostly unchanged, however, presence of the microcavity causes wavelength selectivity and a drastic increase of the optical field at resonance wavelengths. Faster transit-time limited PDs with thinner absorption regions can maintain high efficiency due to the enhanced optical field. Combination of RCE detection scheme with Schottky- and p-i-n-type PDs allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes.; This dissertation focuses on the design, simulation, optimization, fabrication, and characterization of RCE photodiodes with demonstrated devices based on the AlGaAs/GaAs/InGaAs material system. First, transit-time limited ultrafast RCE Schottky photodiodes with a semi-transparent Schottky contact, that also serves as the top cavity mirror are demonstrated. Also, experimental results are presented on ultrafast transit-time limited p-i-n photodiodes with nearly unity quantum efficiency, and a resonance wavelength that can be adjusted after fabrication. Furthermore, large active area RCE p-i-n photodiodes are demonstrated in order to complement high speed vertical cavity surface emitting lasers for the commercialization of 10 Gb/s and faster short-distance links. These devices have a thick depletion region, and they achieve higher bandwidth than transit-time limited devices that have the same size. The large active area makes these devices particularly suitable for applications employing multimode fiber.; The wavelength selectivity of RCE devices causes the effective quantum efficiency to degrade when the source wavelength does not match the cavity resonance-wavelength, or when the excitation has a broad spectral content. We also report our work on a novel cavity structure designed to yield a “flat-topped” spectral responsivity peak, in contrast to the “Lorentzian-like” response of the regular Fabry-Perot cavities employed in standard RCE devices. We employ a tunable spacer layer stacked on top of a regular RCE cavity in order to attain a nearly constant quantum efficiency over a 10–15 nm spectral region, eliminating the need to strictly match the resonant wavelength of the photodiode to the laser wavelength.
机译:谐振腔增强(RCE)光电二极管(PD)是有望克服带宽效率乘积(BWE)限制的有前途的候选者,适用于需要高速,高效光电检测的光通信和互连中。在这样的结构中,光电检测器的电性能基本上保持不变,然而,微腔的存在导致波长选择性和共振波长处的光场急剧增加。由于光场的增强,吸收区域较薄的受PD限制的传输时间更快,可以保持高效率。将RCE检测方案与肖特基和 p-i-n 型PD结合使用,可以以相对简单的材料结构和制造工艺来制造高性能光电探测器。本论文重点研究了基于AlGaAs / GaAs / InGaAs材料系统的RCE光电二极管的设计,仿真,优化,制造和表征。首先,展示了具有半透明肖特基触点的渡越时间有限的超快RCE肖特基光电二极管,该光电二极管也可以用作顶部腔镜。此外,实验结果还展示了超快渡越时间有限的 p-i-n 光电二极管,其量子效率几乎为1,并且在制造后可以调节谐振波长。此外,为了补充高速垂直腔表面发射激光器,以实现10 Gb / s和更快的短距离链路的商业化,还展示了大有效面积RCE p-i-n 光电二极管。这些设备的耗尽区很厚,并且与具有相同大小的经过时间限制的设备相比,它们可以获得更高的带宽。较大的有效面积使这些设备特别适合采用多模光纤的应用。当源波长与腔共振波长不匹配时,或者当激发具有较宽的光谱含量时,RCE器件的波长选择性会导致有效量子效率降低。我们还报告了我们在新型腔结构上的工作,该腔结构旨在产生“平顶”光谱响应峰,这与标准RCE设备中使用的常规Fabry-Perot腔的“类洛伦兹”响应相反。我们采用堆叠在常规RCE腔顶部的可调间隔层,以便在10–15 nm的光谱范围内获得接近恒定的量子效率,从而无需将光电二极管的谐振波长与激光波长严格匹配。

著录项

  • 作者

    Gokkavas, Mutlu.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号