首页> 外文学位 >Metabolism of fructooligosaccharides by lactic acid bacteria and bifidobacteria.
【24h】

Metabolism of fructooligosaccharides by lactic acid bacteria and bifidobacteria.

机译:低聚果糖被乳酸菌和双歧杆菌代谢。

获取原文
获取原文并翻译 | 示例

摘要

Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for selection of bacterial strains used as probiotics. Despite the considerable commercial and research interests in oligosaccharides and probiotic bacteria, relatively little is known about which strains actually metabolize and how lactobacilli and bifidobacteria utilize FOS. The objective of this research was to identify lactic acid bacteria and bifidobacteria capable of fermenting FOS, to study FOS metabolism by these organisms and to determine how they accumulate and use FOS.; To investigate which strains metabolize FOS, lactic acid bacteria and bifidobacteria were screened for their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS.; To identify and characterize the FOS transport system of Lactobacillus paracasei 1195, radiolabeled FOS was synthesized enzymatically from [3H]-sucrose using fructosyltransferase. FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell-free supernatants. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake, but other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, and other metabolic inhibitors, FOS transport rates were reduced by up to 60%. Ionophores that abolished the proton-motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette (ABC) transport systems. These results suggest that FOS transport in L. paracasei 1195 is mediated by a high-affinity ABC transporter. In contrast, we discovered that sucrose was transported and phosphorylated by a phosphoenolpyruvate-dependent phosphotransferase system.
机译:已经提出低聚果糖(FOS)和其他低聚糖的发酵是选择用作益生菌的细菌菌株的重要特性。尽管在寡糖和益生菌上有相当大的商业和研究兴趣,但对哪些菌株实际代谢以及乳杆菌和双歧杆菌如何利用FOS的了解相对较少。该研究的目的是鉴定能够发酵FOS的乳酸菌和双歧杆菌,研究这些生物对FOS的代谢,并确定它们如何积累和使用FOS。为了调查哪些菌株代谢FOS,筛选了乳酸菌和双歧杆菌在MRS琼脂上发酵低聚果糖(FOS)的能力。在所检查的28株乳酸菌和双歧杆菌菌株中,16株乳酸杆菌菌株中的12株和8株双歧杆菌菌株中的7株发酵了FOS。只有通过琼脂法产生阳性反应的菌株才能在含有FOS的肉汤中达到高细胞密度。为了鉴定和表征副干酪乳杆菌 1195的FOS转运系统,使用果糖基转移酶从[ 3 H]-蔗糖酶促合成了放射性标记的FOS。仅在从FOS或蔗糖生长的细胞制备的细胞提取物中检测到FOS水解活性,而在无细胞的上清液中则没有。竞争实验表明,葡萄糖,果糖和蔗糖可减少FOS的摄取,但其他单糖,二糖和三糖的抑制作用较小。用氟化钠,碘乙酸和其他代谢抑制剂处理细胞后,FOS转运速率降低了多达60%。废除质子动力的离子载体仅稍微降低了FOS的传输。相比之下,原钒酸盐可抑制摄取,原钒酸盐是ATP结合盒(ABC)转运系统的抑制剂。这些结果表明FOS在 L中运输。 1195年的paracasei 是由高亲和力的ABC转运蛋白介导的。相反,我们发现蔗糖被磷酸烯醇丙酮酸依赖性磷酸转移酶系统转运和磷酸化。

著录项

  • 作者

    Kaplan, Handan.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Biology Microbiology.; Agriculture Food Science and Technology.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;农产品收获、加工及贮藏;
  • 关键词

  • 入库时间 2022-08-17 11:46:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号