首页> 外文学位 >Low-frequency bulk and surface generation-recombination noise simulations of semiconductor devices.
【24h】

Low-frequency bulk and surface generation-recombination noise simulations of semiconductor devices.

机译:半导体器件的低频体和表面产生-复合噪声仿真。

获取原文
获取原文并翻译 | 示例

摘要

Analysis of semiconductor device noise in the past has generally been separated into two parts. In the first part one tries to understand which type of noise is the dominant noise source and derive its local noise strength in each differential volume. The second part deals with deriving the transfer function, either the trans-conductance or the trans-admittance (depending on the circuit bias condition at the contact), to couple the local noise strength from each differential volume to the external contact. Integrating the product of the local noise strength and the transfer function over the device volume will produce the overall noise at the specified terminal. This type of analysis can only be done to a certain extent, since deriving the analytical expression of the transfer function is limited to only a few simple cases and device structures. To expand the capability of predicting device noise through this type of analysis, we developed a partial differential equation (PDE)-based, generalized-scheme two-dimensional semiconductor device-simulation tool to perform the transfer function calculation.; The purpose of this research is to use a computer-aided device simulation tool to analyze and simulate low frequency semiconductor device noise. To investigate the low-frequency noise, the bulk generation-recombination noise mechanism was implemented. Since this type of noise can only explain Lorentzian spectra observed in resistors but not the 1/f-like noise in MOS devices, interface generation-recombination and the McWhorter-type oxide trapping noise mechanisms were added. The simulation results verified that oxide trapping noise (caused by the carrier fluctuations in the channel because of carrier tunneling between the trap centers in the oxide and at the interface) is indeed the source of the 1/f noise observed in MOS devices.; One application of this tool is noise defect spectroscopy by modeling the defect density distribution in the oxide through inverse engineering. By adjusting the defect density in the bulk and in the oxide to match the noise simulations with their corresponding measured data, one can obtain the defect density profile of the device. In addition, this tool can be used to predict the maximum amount of defects allowed to guarantee excess noise-free device operation.
机译:过去对半导体器件噪声的分析通常分为两部分。在第一部分中,我们试图了解哪种类型的噪声是主要的噪声源,并在每个差分体积中得出其局部噪声强度。第二部分处理推导传递函数,即跨导或跨导(取决于触点处的电路偏置条件),以将局部噪声强度从每个差分体积耦合到外部触点。将局部噪声强度与传递函数在器件体积上的乘积积分将在指定端子处产生整体噪声。这种类型的分析只能在一定程度上进行,因为导出传递函数的分析表达式仅限于一些简单的情况和设备结构。为了通过这种类型的分析扩展预测设备噪声的能力,我们开发了基于偏微分方程(PDE)的广义方案二维半导体器件仿真工具来执行传递函数计算。本研究的目的是使用计算机辅助的器件仿真工具来分析和仿真低频半导体器件的噪声。为了研究低频噪声,实现了大体产生-重组噪声机制。由于这种噪声只能解释在电阻器中观察到的洛伦兹频谱,而不能解释MOS器件中的1 / 噪声,因此增加了界面生成复合和McWhorter型氧化物陷阱噪声机制。仿真结果证明,氧化物俘获噪声(由沟道中的载流子波动引起,这是由于氧化物中陷阱中心和界面处的陷阱中心之间的载流子隧穿引起的)的确是1 / 噪声的来源在MOS器件中观察到。该工具的一种应用是通过逆向工程对氧化物中的缺陷密度分布进行建模,从而实现噪声缺陷光谱学。通过调节块体和氧化物中的缺陷密度,使噪声模拟与它们相应的测量数据相匹配,可以获得器件的缺陷密度分布。此外,该工具可用于预测允许的最大缺陷数量,以确保无噪声的设备正常运行。

著录项

  • 作者

    Hou, Fan-Chi (Frank).;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号