首页> 外文学位 >Genetic analysis of the role of reactive oxygen and Hsp70 in the response to anoxia in Drosophila.
【24h】

Genetic analysis of the role of reactive oxygen and Hsp70 in the response to anoxia in Drosophila.

机译:遗传分析活性氧和Hsp70在果蝇对缺氧的反应中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Dioxygen is required by all aerobic organisms. Too much or too little oxygen results in cell and/or tissue damage, and eventually death. Hypoxia-reoxygenation imposes severe oxidative stress with wide-ranging implications in biology and medicine. In contrast to most mammals, insects exhibit extraordinary tolerance to low levels of oxygen and even to anoxia. Anoxia is a potent anesthetic, causing immediate coma (catalepsy) in insects. Numerous studies have described the phenomenon of tolerance to anoxia (and hypoxia) observed in Drosophila melanogaster. However, no mechanistic explanation for such resistance has been offered. This thesis presents a biological and genetic investigation of the role of reactive oxygen metabolism in the response of Drosophila to anoxia. At the biological level, the impact of reactive oxygen metabolism on recovery from anoxia has been examined through the use of fly strains mutant and transgenic for various antioxidant enzymes. ROS may act as effectors for recovery from anoxia and the major site of their action may involve the neuromuscular tissue. At the genetic level, the expression pattern of specific genes encoding antioxidant enzymes and Hsp70 in response to anoxia has been examined. Genes encoding SOD1, SOD2, and CAT are not up-regulated during anoxic stress, whereas Hsp70 is induced during recovery from anoxia. The biological role of Hsp70 induction by anoxia remains unknown. At the genome-wide level, Drosophila DNA microarray and differential display methodologies have been utilized to identify genes differentially expressed during normoxia, anoxia, and post-anoxia recovery. The results show that DNA microarrays are an efficient tool to identify other genes which may participate in the mechanism(s) underlying the resistance of Drosophila to anoxia. This study provides the first evidence for the role of ROS metabolism in recovery from anoxia in Drosophila, and for the correlated involvement of Hsp70 and other newly identified genes in this process. Further characterization of these genes may lead to a clearer understanding of the genetic basis of the capacity of Drosophila to endure and recover from extended periods of total oxygen deprivation. These findings may ultimately provide practical insights into understanding ischemic tissue damage in human medicine.
机译:所有有氧生物都需要双氧。氧气过多或过少都会导致细胞和/或组织受损,并最终导致死亡。缺氧-复氧会产生严重的氧化应激,对生物学和医学产生广泛的影响。与大多数哺乳动物相反,昆虫表现出对低氧水平甚至对缺氧的非凡耐受性。缺氧是一种强效麻醉剂,可引起昆虫立即昏迷(僵直)。许多研究已经描述了在果蝇中观察到的对缺氧(和缺氧)的耐受性现象。但是,尚未提供有关这种阻力的机械解释。本文提出了活性氧代谢在果蝇对缺氧反应中的作用的生物学和遗传学研究。在生物学水平上,已经通过使用蝇株突变体和转基因的各种抗氧化酶检查了活性氧代谢对缺氧恢复的影响。 ROS可能是从缺氧中恢复的效应子,其作用的主要部位可能涉及神经肌肉组织。在遗传水平上,已经研究了编码抗氧化酶和Hsp70响应缺氧的特定基因的表达模式。在缺氧胁迫下,编码SOD1,SOD2和CAT的基因未上调,而在缺氧恢复过程中诱导了Hsp70。缺氧诱导Hsp70的生物学作用仍然未知。在全基因组水平上,果蝇DNA芯片和差异显示方法已被用于识别在常氧,缺氧和缺氧后恢复过程中差异表达的基因。结果表明,DNA微阵列是鉴定其他基因的有效工具,这些基因可能参与了果蝇对缺氧性抗性的潜在机制。这项研究提供了第一个证据证明ROS代谢在果蝇厌氧症的恢复中的作用,以及Hsp70和其他新发现的基因在此过程中的相关参与。这些基因的进一步表征可能会导致对果蝇忍受长期总氧气剥夺和恢复能力的遗传基础有更清晰的了解。这些发现最终可以为了解人类医学中的缺血性组织损伤提供实用的见识。

著录项

  • 作者

    Fung, Yin-Wan Wendy.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

  • 入库时间 2022-08-17 11:46:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号