首页> 外文学位 >Model-based time- and frequency-domain processing of single optical coherence tomography A-scans.
【24h】

Model-based time- and frequency-domain processing of single optical coherence tomography A-scans.

机译:单光相干断层扫描A扫描的基于模型的时域和频域处理。

获取原文
获取原文并翻译 | 示例

摘要

An essential goal of optical coherence tomography (OCT) is to develop methods and instrumentation that yield high-definition visualization of tissue structures co-registered with accurate and precise quantification of blood flow in non-stationary situations. Previous OCT enhancements have improved the acquisition speed, with, however, the need for averaging to compensate for lower signal-to-noise (SNR). To this day, information is extracted from OCT signals using Fourier analysis, which is limited by the trade-off between spatial and velocity resolution. We sought to improve measurements from a single OCT A-scan.; We developed a simulator that allows one to understand better the impact of source and tissue parameters on OCT signals. We introduced a model-based approach to processing OCT signals and obtaining statistics from a single A-scan. Statistics and error estimates allow for diminution of unreliable data, objective analysis, and information visualization of OCT measurements. Decimation and windowing were implemented to improve the SNR. A parabolic model based on linear regression was developed to provide rapid error estimates on the measurements. The parabolic model was then expanded to yield exact solutions to a conic model that can identify, isolate, and quantify asymmetry in the OCT power spectrum. Such conic models can potentially model and quantify shear rates, source asymmetry, or system distortions.; We then developed velocimetry techniques based on the Doppler effect and applied them to single A-scans acquired in ∼1 μs with a rapid-scan system (RSOD). Results indicate the accuracy and precision of both the amplitude and frequency (i.e., velocity) calculations based upon our time-domain processing. Spatial and velocity resolution are limited ultimately by the acquisition rate and resolution of the data acquisition board. We explain how time-domain processing of OCT signals can improve frequency and spatial resolution without violating the uncertainty principle that limits Fourier-based methods. Finally, we showed that a combination of OCT and ultrasound induces acousto-optic interactions that measure non-optical material properties with the resolution of optical methods. The volumetric nature of acoustically-enhanced OCT should allow one to image structures with diffuse boundaries, such as infiltrating tumors.
机译:光学相干断层扫描(OCT)的基本目标是开发方法和仪器,以在非平稳情况下对组织结构进行高清晰度可视化,并与精确和精确的血流定量共同记录。先前的OCT增强功能提高了采集速度,但是需要进行平均以补偿较低的信噪比(SNR)。迄今为止,使用傅立叶分析从OCT信号中提取信息,这受到空间分辨率和速度分辨率之间权衡的限制。我们试图通过单次OCT A扫描改善测量结果。我们开发了一种模拟器,可以使人们更好地了解源和组织参数对OCT信号的影响。我们引入了一种基于模型的方法来处理OCT信号并从单次A扫描获得统计信息。统计信息和错误估计值可以减少不可靠的数据,进行客观分析,并可以对OCT测量值进行信息可视化。进行抽取和加窗以提高SNR。开发了基于线性回归的抛物线模型,以提供有关测量的快速误差估计。然后将抛物线模型扩展为圆锥形模型的精确解,该圆锥形模型可以识别,隔离和量化OCT功率谱中的不对称性。这种圆锥模型可以潜在地对剪切速率,源不对称性或系统失真进行建模和量化。然后,我们基于多普勒效应开发了测速技术,并将其应用于通过快速扫描系统(RSOD)在约1μs内获得的单次A扫描。结果表明了基于我们的时域处理的幅度和频率(即速度)计算的准确性和精确性。空间和速度分辨率最终受到数据采集板的采集速率和分辨率的限制。我们将解释OCT信号的时域处理如何在不违反限制基于傅立叶方法的不确定性原理的情况下提高频率和空间分辨率。最后,我们表明,OCT和超声的结合可诱发声光相互作用,从而以光学方法的分辨率测量非光学材料的性能。声学增强的OCT的体积性质应允许对具有弥散边界的结构成像,例如浸润的肿瘤。

著录项

  • 作者

    Edney, Paul Alexis.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 489 p.
  • 总页数 489
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号