首页> 外文学位 >Motion planning and tracking control of a mobile robot using genetic algorithm based approaches.
【24h】

Motion planning and tracking control of a mobile robot using genetic algorithm based approaches.

机译:使用基于遗传算法的方法对移动机器人进行运动规划和跟踪控制。

获取原文
获取原文并翻译 | 示例

摘要

Motion planning and tracking control are two fundamental issues in mobile robotics. The path planning is to generate a collision-free trajectory for a mobile robot to move from an initial configuration to a goal configuration. In the first part of this thesis, a novel genetic algorithm based approach to path planning of a mobile robot is proposed. The main feature of this algorithm is that the chromosome has a variable length, which is more suitable than using fixed-length chromosomes in a dynamic environment. The proposed algorithm is capable of generating a near-optimal robot path in both static and moving-obstacle environments with obstacle avoidance.; The tracking control is to generate control velocities to drive the mobile robot to follow a desired path. In the second part of this thesis, genetic algorithms are applied to optimize the performance of the backstepping and sliding mode tracking controllers for a point mobile robot by tuning the model parameters. The proposed genetic algorithm based backstepping controller can guarantee the system stability and convergence of tracking error to zero. It eliminates the oscillation at the initial phase in both the linear and angular velocities. In the proposed genetic algorithm based sliding mode controller, the optimal parameters are also obtained using a genetic algorithm. It can remove the chattering in the initial phase. The system is asymptotically stable and the error converges to zero. Finally, the proposed path planner and tracking controller are integrated into one system for both path planning and tracking control of a mobile robot. The effectiveness is demonstrated by simulation studies.
机译:运动计划和跟踪控制是移动机器人技术中的两个基本问题。路径规划是为移动机器人生成从初始配置到目标配置的无碰撞轨迹。在本文的第一部分,提出了一种基于遗传算法的移动机器人路径规划方法。该算法的主要特征是染色体具有可变长度,比在动态环境中使用固定长度的染色体更适合。所提出的算法能够在静态和移动障碍环境中均能避开障碍物,从而产生接近最佳的机器人路径。跟踪控制将生成控制速度,以驱动移动机器人遵循所需的路径。在本文的第二部分中,遗传算法被应用于通过调整模型参数来优化点移动机器人的后推和滑模跟踪控制器的性能。提出的基于遗传算法的反推控制器可以保证系统的稳定性和跟踪误差收敛到零。它消除了线速度和角速度在初始阶段的振荡。在提出的基于遗传算法的滑模控制器中,还使用遗传算法获得了最优参数。它可以在初始阶段消除抖动。系统是渐近稳定的,误差收敛到零。最后,将提出的路径规划器和跟踪控制器集成到一个系统中,用于移动机器人的路径规划和跟踪控制。仿真研究证明了有效性。

著录项

  • 作者

    Tu, Jianping.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Engineering Mechanical.; Computer Science.
  • 学位 M.Sc.
  • 年度 2003
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号