首页> 外文学位 >Molecular devices and molecular motors: Applications in nanotechnology.
【24h】

Molecular devices and molecular motors: Applications in nanotechnology.

机译:分子设备和分子电动机:在纳米技术中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Computer chip technology has been fast growing for several decades. But including more circuitry onto silicon chips now faces fundamental limits. The devices are made so small that they no longer function. In recent years, scientists have been trying to find a new path to overcome these limits: using single molecules and small chemical groups to make transistors and other standard components of computer chips. That is how “molecular electronics” gets its name. Molecular electronics, which deals with materials mostly in nanometer scale, gives scientists much more opportunities in developing nano- and molecular-scale electronics.; However, the realization of molecular-scale devices is much more difficult than theory. Although lots of work has been done in basic research, a real working device has not come out until recent years. Yet, there are many questions and suspicions in this area waiting for answers and solutions. That is the situation where this thesis comes out. Starting with basic research methods, this thesis presents several novel processes in developing molecular-scale devices, some are successful, some are not. These work include the physical characterization of self-assembled monolayers (SAMs), such as ellipsometry and contact angle measurements; and also provide insight into the electrical characterization of SAMs, including molecular probe station and membrane-template synthesized in-wire molecular junctions. But because none good molecule candidate exists, the development of molecular electronics are limited.; So, this thesis starts to take a different approach to investigate materials with even simpler structures. A large area testing device is investigated which is built from charge-transfer molecules (TCNQ) and solid polymer electrolytes. A known redox effect is observed for this system and it is believed to have memory potentials. Although it is not a real molecular device, it provides information on how to direct our research to find the good candidate molecules for future molecular memories.; A second approach is the application of molecular motor system. It is a new area coming out in recent years which uses the power of biological machines. This system uses kinesin and microtubules. Kinesins are biological motor proteins that transport intracellular cargo in vivo along microtubules. These motors move at roughly 1 μm/sec and are capable of generating cumulative forces in the order of nN per μm2. The size, efficiency, and potential power density suggest that it is possible to build sophisticated micro- and nano-devices powered by these motors. This thesis work employs microlithography as a tool to pattern channels on glass in order to extract useful work from these motors and orient microtubules traveling over kinesin-coated surfaces. In order to build simple devices, such as “lab-on-a-chip”, which uses the power of kinesin/microtubule system to sort out specific bio-molecules, arrowheads and bifurcations are made in order to obtain unidirectional movement of microtubules and DC and AC electric fields are used to guide microtubules to defined locations. Nanowire movement by this motor system is also observed, which indicates that the force generated by this system is sufficient for more general applications.; The author hopes that the demonstrations of building molecular devices, screening molecules with memory effects, and the manipulation of kinesin motor/microtubule system can give readers some information on new applications of nanotechnology and provide useful thoughts on the development of micro- and nano-electronics.
机译:几十年来,计算机芯片技术一直在迅速发展。但是,在硅芯片上包含更多电路现在面临着基本限制。这些设备非常小,以至于它们不再起作用。近年来,科学家们一直在尝试寻找克服这些限制的新途径:使用单个分子和小的化学基团来制造晶体管和计算机芯片的其他标准组件。这就是“分子电子学”的名称。分子电子学主要处理纳米级材料,为科学家提供了更多开发纳米和分子级电子学的机会。但是,实现分子级装置比理论上困难得多。尽管基础研究已经做了大量工作,但是直到最近几年才出现真正的工作装置。然而,在这一领域中有许多问题和猜疑正在等待答案和解决方案。这就是本文提出的情况。从基础研究方法入手,本文提出了几种开发分子规模装置的新颖方法,有些成功,有些则没有。这些工作包括自组装单分子层(SAMs)的物理表征,例如椭圆偏振法和接触角测量;还可以深入了解SAM的电特性,包括分子探针台和膜模板合成的在线分子连接。但是由于没有好的候选分子,分子电子学的发展受到了限制。因此,本文开始采用不同的方法来研究结构更简单的材料。研究了一种由电荷转移分子(TCNQ)和固体聚合物电解质构成的大面积测试设备。对于该系统观察到了已知的氧化还原效应,并且据信具有存储潜力。尽管它不是真正的分子装置,但它提供了有关如何指导我们的研究以找到用于未来分子记忆的良好候选分子的信息。第二种方法是分子马达系统的应用。这是近年来利用生物机器的力量出现的一个新领域。该系统使用驱动蛋白和微管。驱动蛋白是生物运动蛋白,其沿着微管在体内转运细胞内货物。这些电动机以大约1μm/ sec的速度运动,并能够产生nN /μm 2 的累积力。尺寸,效率和潜在的功率密度表明,可以构建由这些电机供电的复杂的微型和纳米设备。本文的工作是利用微光刻技术对玻璃上的通道进行图案化,以从这些电机中提取有用的功,并确定在驱动蛋白涂层表面上行进的微管的方向。为了构建简单的设备,例如“片上实验室”,它使用驱动蛋白/微管系统的功能来分选特定的生物分子,制作了箭头和分叉以便获得微管和细胞的单向运动。 DC和AC电场用于将微管引导到定义的位置。还观察到该电动机系统的纳米线运动,这表明该系统产生的力足以满足更一般的应用。作者希望通过构建分子装置,演示具有记忆效应的分子以及操纵驱动蛋白运动/微管系统的演示,可以为读者提供有关纳米技术新应用的一些信息,并为微电子和纳米电子学的发展提供有益的思路。 。

著录项

  • 作者

    Jia, Lili.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:45:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号