首页> 外文学位 >Development of pachytene cytogenetic fluorescence in situ hybridization (FISH) maps for six maize chromosomes: Insights into genome structure dynamics.
【24h】

Development of pachytene cytogenetic fluorescence in situ hybridization (FISH) maps for six maize chromosomes: Insights into genome structure dynamics.

机译:六种玉米染色体的粗线细胞遗传荧光原位杂交(FISH)图的开发:对基因组结构动力学的洞察力。

获取原文
获取原文并翻译 | 示例

摘要

Plant cytogenetics has continued to flourish and make essential contributions to genomics projects by delineating marker order, defining contig gaps, and revealing genome rearrangements. Here we review the field of plant cytogenetics from its conception through the eras of molecular biology and genomics (Chapter 1). Significant advances in chromosome preparation, such as extended fiber-FISH, have greatly increased the axial resolution limits, while imaging and signal amplification technologies have improved our ability to detect small gene-sized probes. These advances are described, together with selected examples that illustrate the power of plant cytogenetics in guiding genome projects.;The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using the landmark Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented in Chapter 2. The use of homologous sorghum BACs as representative FISH probes for the creation of cytogenetic FISH maps for six maize chromosomes as well as in the mapping of duplicate maize regions are presented in Chapters 3 and 4, respectively. Finally, in Chapter 5 we compare our pachytene cytogenetic maps as well as the high-density chromosome 9 FISH map to the maize genomic map (Schnable et al., 2009), the UMC98 genetic linkage map (Davis et al., 1999), and to recombination nodule-based predictions of meiotic cytological coordinates (Anderson et al., 2004; Lawrence et al., 2006).
机译:植物细胞遗传学一直在蓬勃发展,并通过描绘标记顺序,定义重叠群缺口和揭示基因组重排,为基因组计划做出了重要贡献。在这里,我们从分子生物学和基因组学的时代出发,回顾植物细胞遗传学的领域(第1章)。染色体制备方面的重大进展,例如延伸的FISH纤维,大大提高了轴向分辨率的极限,而成像和信号放大技术则提高了我们检测小型基因探针的能力。描述了这些进展,并举例说明了植物细胞遗传学在指导基因组计划中的作用。玉米的遗传图谱和物理图谱的整合进展迅速,但细胞遗传图谱的发展滞后,除了粗线粒体荧光素玉米9号染色体的原位杂交(FISH)图。我们试图使用具有里程碑意义的Core Bin Marker基因座来生成其他玉米染色体的整合FISH图。由于这些1 Kb限制性片段长度多态性(RFLP)探针低于FISH检测极限,因此我们使用了来自玉米的小基因组亲戚高粱的BAC作为FISH定位的替代克隆。我们对151个玉米RFLP探针进行了测序,并在计算机BAC选择方法中与文库过滤杂交进行了比较,发现后者是最好的。 BAC库筛选,克隆验证和单克隆选择标准在第2章中介绍。使用同源高粱BAC作为代表性FISH探针来创建六个玉米染色体的细胞遗传FISH图以及在重复玉米区域中进行图谱绘制分别在第3章和第4章中介绍。最后,在第5章中,我们将粗线细胞的细胞遗传图谱和高密度9号染色体FISH图谱与玉米基因组图谱(Schnable等,2009),UMC98遗传连锁图谱(Davis等,1999)进行了比较,并重组基于根瘤的减数分裂细胞座标预测(Anderson等,2004; Lawrence等,2006)。

著录项

  • 作者

    Figueroa, Debbie.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Biology Molecular.;Agriculture Plant Culture.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号