首页> 外文学位 >Energy absorption capabilities of composite sandwich panels under blast loads.
【24h】

Energy absorption capabilities of composite sandwich panels under blast loads.

机译:爆炸载荷下复合夹芯板的能量吸收能力。

获取原文
获取原文并翻译 | 示例

摘要

As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption.;The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats.;Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy, ET) was suggested to compare energy absorption capabilities of the structures under blast loading. In addition, AEweb/ET (where AEweb is the energy absorbed by the middle core) was also employed to evaluate the energy absorption contribution from the web.;Taking advantage of FEA and the simplified analytical model, the influences of material properties as well as core architectures and geometries on energy absorption capabilities (quantified by AET/ ET and AEweb/E T) were investigated through parametric studies. Results from the material property investigation indicated that density of the front face sheet and strength were most influential on the energy absorption capability of the composite sandwich panels under blast loading. The study to investigate the potential effectiveness of energy absorbed via inelastic deformation compared to energy absorbed via progressive failure indicated that for practical applications (where the position of bomb is usually unknown and the panel is designed to be the same anywhere), the energy absorption via inelastic deformation is the more efficient approach. Regarding the geometric optimization, it was found that a core architecture consisting of vertically-oriented webs was ideal. The optimum values for these parameters can be generally described as those which cause the most inelasticity, but not failure, of the face sheets and webs.
机译:由于对军事和民用建筑的爆炸威胁仍然是一个重大问题,因此,仍需要改进设计策略以提高其抗爆炸能力。本文提出的抗爆炸性方法的重点是通过最大程度地降低复合材料夹芯板的能量吸收潜力来消除爆炸过程中产生的高压力,复合纤维夹芯板由于纤维增强聚合物的固有能量吸收能力而成为竞争性结构构件类型(FRP)复合材料。此外,夹心板中的中芯可以设计为牺牲层,以允许大量变形或渐进破坏,以最大程度地吸收能量。;此处的研究旨在优化复合夹层板以缓解爆炸通过能量吸收机制。所考虑的能量吸收机制包括由于非弹性变形而吸收的应变能,以及由于夹心板的芯部逐渐破坏而导致的能量耗散。该研究中使用的方法包括经过实验验证的有限元分析(FEA)以及简化分析模型的推导和使用。然后,工作范围的关键组成部分包括:建立量化的能量吸收标准,验证所选的有限元建模技术,开发简化的分析模型,研究有影响力的核心结构和几何参数以及研究有影响的材料特性。对于被认为是最有影响力的参数,建议以概念性术语建议这些参数的建议值,这有助于设计用于各种爆炸威胁的复合夹芯板;基于对爆炸载荷下板的能量响应特性的研究,建议使用无量纲参数AET / ET(吸收能量AET,通过总能量ET归一化)来比较爆炸荷载下结构的能量吸收能力。此外,还利用AEweb / ET(其中AEweb是中芯吸收的能量)来评估纤维网的能量吸收贡献。;利用有限元分析和简化的分析模型,材料特性的影响以及通过参数研究研究了能量吸收能力的核心架构和几何形状(由AET / ET和AEweb / ET量化)。材料性能研究的结果表明,在爆炸载荷下,前面板的密度和强度对复合夹芯板的能量吸收能力影响最大。这项研究调查了通过非弹性变形吸收能量与通过渐进破坏吸收能量的潜在有效性,该研究表明,在实际应用中(炸弹的位置通常是未知的,并且面板设计为在任何地方都是相同的),通过无弹性变形是更有效的方法。关于几何优化,发现由垂直方向的网组成的核心体系结构是理想的。这些参数的最佳值通常可以描述为导致面板和纤维网最无弹性但不会造成破坏的那些值。

著录项

  • 作者

    Su, Hong.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Civil.;Energy.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 357 p.
  • 总页数 357
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号