首页> 外文学位 >文献详情
【24h】

Steady States, Non-Steady Evolution, Pinch-off and Post-Pinch-off of Axisymmetric Drops in Stokes Flow.

机译:Stokes流中轴对称液滴的稳态,非平稳演变,收缩和收缩后。

获取原文
获取原文并翻译 | 示例

摘要

A good understanding of drop evolution and breakup is important in many applications. For instance, controlling the liquid droplet size is crucial in atomization processes such as fuel combustion and fertilizer application, as well as drop-on-demand technologies such as ink-jet printing and DNA arraying. In these applications, the length scales are very small relative to viscosity so that the Reynolds number is much less than unity. The aim of this work is to investigate the evolution and breakup of drops in Stokes flow.;Drop evolution depends on different factors, such as the drop size, the viscosity, any applied force, or surface tension. In this dissertation, the behavior of axisymmetric viscous drops in a nonlinear strain field is investigated for various parameters. The three non-dimensional parameters that determine the flow in our case are: the capillary number Ca which measures the strength of the strain field and drop viscosity relative to surface tension, the ratio of inner to outer viscosities, and the relative nonlinearity c2 of the background flow. It is known that the drop approaches a steady state for sufficiently small values of Ca and that there exists a critical value of the capillary number, Cacr, above which no steady states exist. We examine the evolution of the drop as a function of these three parameters. Our main results are explained in three parts. (1) A full classification of the steady-state solutions in the parameter-space for Ca ≤ Cacr is presented. In particular, we describe the deformation, maximum curvature and the critical capillary number as functions of the key parameters. We find previously unobserved biconcave steady shapes. (2) The non-steady evolution for Ca > Cacr is studied and classified. With c2 = 0, the drop keeps elongating and becomes more pointed in time. With positive values of c2, the surface approaches a cusp as it increases in length. With negative values of c2, the surface collapses at two points on the axis in finite time. Thus the solution has a finite time pinch-off singularity (3) Based on experimental observations, the drop surface is expected to break at the time of pinch-off and reconnect to form several smaller drops. We develop a numerical method to simulate the break-and-reconnection process. This enables us to compute the after pinch-off drop evolution. Our simulations indicate that this phenomenon has a linear self-similar behavior before and after pinch-off. Further pinch-offs is observed. Throughout this work the fifth-order boundary integral method presented by Nitsche et al. [1] is used. This method enables us to resolve the flow using fewer computational points compared to the commonly used second-order method. Furthermore, it is shown that the uniformly fifth-order method proposed in earlier work [1] makes a significant improvement in the results in certain cases.
机译:在许多应用中,对液滴演化和破裂的深入了解很重要。例如,在雾化过程(例如燃料燃烧和肥料施用)以及按需滴滴技术(例如喷墨打印和DNA阵列)中,控制液滴大小至关重要。在这些应用中,相对于粘度,长度刻度非常小,因此雷诺数远小于1。这项工作的目的是研究斯托克斯流中液滴的演化和破裂。液滴的演化取决于不同的因素,例如液滴的大小,粘度,施加的力或表面张力。本文针对各种参数研究了非线性应变场中轴对称粘性滴的行为。在我们的情况下,决定流动的三个无量纲参数是:毛细管数Ca,它测量应变场的强度和相对于表面张力的液滴粘度,内外粘度之比以及样品的相对非线性c2。背景流。已知对于足够小的Ca值,液滴接近稳态,并且存在毛细管数的临界值Cacr,在该临界值以上不存在稳态。我们根据这三个参数检查液滴的演变。我们的主要结果分为三个部分。 (1)给出了参数空间中Ca≤Cacr的稳态解的完整分类。特别是,我们将变形,最大曲率和临界毛细管数描述为关键参数的函数。我们发现了以前未观察到的双凹稳定形状。 (2)研究了Ca> Cacr的非稳态演化过程,并进行了分类。在c2 = 0的情况下,液滴持续延伸并在时间上变得更加尖锐。当c2为正值时,表面随着长度增加而接近尖点。当c2为负值时,曲面将在有限时间内在轴上的两个点处塌陷。因此,该解决方案具有有限的时间夹断奇点(3)根据实验观察,预计液滴表面在夹断时会破裂并重新连接以形成几个较小的液滴。我们开发了一种数值方法来模拟断开和重新连接过程。这使我们能够计算出夹断后液滴的演变。我们的仿真表明,这种现象在夹断前后具有线性自相似行为。观察到进一步的夹断。在整个工作中,Nitsche等人提出了五阶边界积分方法。使用[1]。与常用的二阶方法相比,此方法使我们能够使用较少的计算点来解析流。此外,还表明,早期工作[1]中提出的统一五阶方法在某些情况下对结果进行了重大改进。

著录项

  • 作者

    Naderi, Shadi Askarian.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Applied Mathematics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
站内服务
  • 写作辅导
  • 期刊发表
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号