首页> 外文学位 >Structural evolution, petrophysics, and large-scale permeability of faults in sandstone, Valley of Fire, Nevada.
【24h】

Structural evolution, petrophysics, and large-scale permeability of faults in sandstone, Valley of Fire, Nevada.

机译:内华达州火谷的砂岩的结构演化,岩石物理学和断层的大规模渗透性。

获取原文
获取原文并翻译 | 示例

摘要

This study of faulted aeolian Aztec sandstone, southern Nevada, elucidates poorly understood details of fault flow characteristics and geometry. The faults formed by shearing along joint zones and comprise a network of two predominately strike-slip fault sets with opposite slip sense. An outcrop- to kilometers-scale conceptual model for the evolution of the strike-slip fault network is presented whereby the network forms by linking of first generation faults via Mode I splay fractures, which are subsequently sheared to form a second generation of faults that have slip sense opposite to the prior generation. At the outcrop-scale at least five hierarchical generations of structures are identified. The final geometry of the fault network is dictated by the characteristic splay fracture kink-angle.; Cross-fault flow characteristics are quantified using detailed petrophysical analysis. Petrophysical data indicate that fault rock permeability is significantly lower than host rock permeability, and that the faults will act as lateral barriers with respect to reservoir production time-scales. The petrophysical data also show that fault rocks are capable of sealing small to moderate hydrocarbon columns with respect to geologic time-scales, assuming adequate continuity of the fault rock over large areas of the fault.; Large-scale permeability characteristics of the faults are quantified using numerical flow simulation techniques that utilize idealizations of detailed field maps. The computed fault zone permeabilities are strongly anisotropic in all cases. Permeability enhancement of nearly an order of magnitude (relative to the host rock) is observed for the fault-parallel component, while fault-normal permeability might be two orders of magnitude less than the host rock permeability.; The numerical flow models are shown to be highly sensitive to the chosen boundary conditions. No-flow boundary conditions sufficiently capture the global flow characteristics of upscaled fault regions. Periodic boundary conditions break connectivity between both high and low permeability features, which tends to result in erroneous upscaled permeabilities. Globally upscaled regions insufficiently predict transport problems. Transport predictions are improved by a step-wise method of removing the through-going high-permeability features from the fine model, upscaling to a coarse grid, and then explicitly representing the high-permeability features in the coarsened model for flow simulations.
机译:内华达州南部断层风成的阿兹台克人砂岩的这项研究阐明了对断层流动特征和几何形状的了解不足。断层是通过沿连接带剪切而形成的,包括两个主要的走滑断层网络,它们具有相反的滑移感。提出了走滑断层网络演化的露头到千米规模的概念模型,其中该网络是通过第一代断层通过I型张裂裂缝连接而形成的,随后被剪切以形成具有第二代断层的断层。与上一代产品相反的滑动感。在露头尺度上,至少可以识别出五个层次的结构。断层网络的最终几何形状由特征性张开裂缝扭结角决定。使用详细的岩石物理分析来量化跨断层的流动特征。岩石物理数据表明,断层岩石的渗透率显着低于基质岩的渗透率,并且相对于储层生产时间尺度,断层将作为横向屏障。岩石物理数据还表明,假设断层岩在断层大面积上具有足够的连续性,则断层岩能够在地质时标上封闭中小型烃柱。使用数值流模拟技术对断层的大规模渗透率特征进行了量化,该技术利用了详细场图的理想化。在所有情况下,计算出的断层带渗透率都是各向异性的。断层平行分量的渗透率提高了近一个数量级(相对于基岩),而断层法向渗透率可能比基岩渗透率小两个数量级。结果表明,数值流模型对所选边界条件高度敏感。无流动边界条件充分地捕获了放大断层区域的整体流动特征。周期性边界条件破坏了高渗透率特征和低渗透率特征之间的连通性,这往往会导致错误的放大渗透率。全球高档地区不足以预测运输问题。通过逐步方法从精细模型中删除贯穿的高渗透率特征,升级为粗网格,然后在流动模型中明确表示粗化模型中的高渗透率特征,可以改善运输预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号