首页> 外文学位 >Blister formation and layer transfer of nitrogen-implanted gallium arsenide.
【24h】

Blister formation and layer transfer of nitrogen-implanted gallium arsenide.

机译:氮注入砷化镓的气泡形成和层转移。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the blister formation and layer transfer of GaAs:N nanocomposite layers produced by N-implantation, wafer bonding, and rapid thermal annealing (RTA) of GaAs were investigated. In addition, we examined the electrical and thermal transport properties of GaAs:N nanocomposite layers.;To examine blister formation mechanisms, the influence of implantation temperature on blister exfoliation depths, lattice damage depth profiles, and N ion fluences was examined. For implantation temperatures of -196 and 300°C, we observed an implantation-temperature-insensitivity of blister formation, in contrast to reports of GaAs:H and Si:H, likely due to the lower GaAs:N ion-matrix diffusivity in comparison to that of GaAs:H or Si:H. These results illustrate the key role of diffusivity on the mechanisms of blister formation.;The influence of post-implantation RTA on the surface morphology, electrical properties, and Seebeck coefficient of GaAs:N nanocomposite films was examined for RTA temperatures between 800 and 900°C. A transition in surface morphology from circular to predominantly elongated features was observed, and attributed to two distinct delamination behaviors. The influence of implantation and RTA on the free carrier concentration, n, and resistivity, rho, of GaAs:N(Si) and GaAs:N(Te) was examined. For GaAs:N, rho follows a log-log dependence on n, independent of the dopant species and RTA conditions. Following implantation plus RTA, decreased n and increased rho were observed for both dopant types with a more significant increase in rho for the Te-doped GaAs:N layer. In addition, the Seebeck coefficient of the GaAs:N nanocomposite layer is enhanced in comparison to that of GaAs.;Finally, the demonstration and optimization of a new process for simultaneous nanostructuring and layer transfer, termed "ion-cut-synthesis," is described. Indeed, the low ion-matrix diffusivity of GaAs:N enabled the formation of both nanocrystals and gas bubbles at high temperature. In this technique, N ion implantation, spin-on glass-mediated wafer bonding, and RTA are used to achieve simultaneous nanostructuring and transfer of GaAs:N films to Al2O3 and AlN substrates. We identify the critical role of thermal-expansion coefficient matching on the success of the ion-cut-synthesis process.
机译:本文研究了通过GaAs的N注入,晶片键合和快速热退火(RTA)产生的GaAs:N纳米复合层的气泡形成和层转移。此外,我们还研究了GaAs:N纳米复合材料层的电学和热学传输特性。为了检查水泡的形成机理,研究了注入温度对水泡剥落深度,晶格损伤深度分布和N离子通量的影响。对于-196和300°C的注入温度,与GaAs:H和Si:H的报道相反,我们观察到水泡形成的注入温度不敏感,这可能是由于与之相比,GaAs:N的离子矩阵扩散性较低到GaAs:H或Si:H。这些结果说明了扩散率对水泡形成机理的关键作用。;在800-900°C的RTA温度下,研究了植入后RTA对GaAs:N纳米复合薄膜表面形貌,电性能和塞贝克系数的影响。 C。观察到表面形态从圆形到主要为拉长特征的转变,并归因于两种不同的分层行为。研究了注入和RTA对GaAs:N(Si)和GaAs:N(Te)的自由载流子浓度n和电阻率rho的影响。对于GaAs:N,rho遵循对数与n的对数-对数依赖性,而与掺杂剂种类和RTA条件无关。植入加上RTA之后,两种掺杂剂类型的n均减小,rho增大,Te掺杂的GaAs:N层的rho增大更大。此外,与GaAs相比,GaAs:N纳米复合层的塞贝克系数得到了提高。最后,展示并优化了一种同时进行纳米结构和层转移的新工艺,称为“离子切割合成”。描述。实际上,GaAs:N的低离子矩阵扩散率使得能够在高温下形成纳米晶体和气泡。在这项技术中,使用N离子注入,旋涂玻璃介导的晶圆键合和RTA来实现同时进行的纳米结构化和GaAs:N薄膜到Al2O3和AlN衬底的转移。我们确定了热膨胀系数匹配对离子切割合成过程成功的关键作用。

著录项

  • 作者

    Collino, Rachel R.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号