首页> 外文学位 >Fourier imaging correlation spectroscopy: Technique development and application to colloidal thin films and intracellular mitochondrial transport.
【24h】

Fourier imaging correlation spectroscopy: Technique development and application to colloidal thin films and intracellular mitochondrial transport.

机译:傅里叶成像相关光谱:胶体薄膜和细胞内线粒体运输的技术发展和应用。

获取原文
获取原文并翻译 | 示例

摘要

Understanding fluid dynamics is fundamentally intriguing and relevant to many areas of applied science, including polymer materials and cellular transport. Many complex fluids are difficult to study using traditional methods, which are limited in sensitivity, dynamic range or spatial information. In this work, a new technique, Fourier Imaging Correlation Spectroscopy (FICS), is developed in order to measure the dynamics of complex fluids over a broad dynamic range with high sensitivity. FICS measures complex fluid structure one length scale at a time and allows for direct calculation of the intermediate scattering function; a function that describes how the system is changing on a given length scale as a function of time. The sensitivity of FICS allows for study of materials with intrinsically low signals, such as thin films. Colloidal thin film measurements provided a proof-of-principle of FICS by comparing the intermediate scattering function calculated from FICS data to results from an established technique, digital video microscopy.; FICS is an ideal method for obtaining information about mitochondrial transport within living cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins. This leads to complex multi-exponential relaxations occurring over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments and microtubules. Cytoskeletal filaments work with motor proteins to traffic organelles within the cell. Components of the cytoskeleton were selectively destabilized and the resulting mitochondrial dynamics measured using FICS and digital video microscopy. These studies show that both microfilaments and microtubules are necessary for transport of the mitochondrial reticulum. FICS measurements reveal that microfilaments control short-range (0.8–1.6 μm) dynamics and microtubules are responsible for transport over larger distances (>1.6 μm).; This dissertation includes co-authored and previously published material.
机译:从根本上理解流体动力学很有趣,并且与许多应用科学领域相关,包括聚合物材料和细胞运输。许多复杂的流体很难使用传统的方法进行研究,因为传统方法的灵敏度,动态范围或空间信息有限。在这项工作中,开发了一种新技术,即傅立叶成像相关光谱法(FICS),以便以高灵敏度在宽动态范围内测量复杂流体的动力学。 FICS一次测量一个长度尺度的复杂流体结构,并允许直接计算中间散射函数;描述系统如何在给定的长度范围内随时间变化的函数。 FICS的灵敏度可用于研究信号本质上较低的材料,例如薄膜。胶体薄膜测量通过比较从FICS数据计算出的中间散射函数与既定技术数字视频显微镜的结果,提供了FICS的原理证明。 FICS是获取有关活细胞内线粒体运输信息的理想方法。线粒体动力学受到与细胞骨架细丝及其相关运动蛋白相互作用的强烈影响。这导致在大范围的空间和时间尺度上发生复杂的多指数松弛。细胞骨架由相互连接的聚合物网络组成,其主要成分是微丝和微管。细胞骨架细丝与运动蛋白共同作用,以运输细胞内的细胞器。选择性地破坏细胞骨架的成分,并使用FICS和数字视频显微镜对所得的线粒体动力学进行测量。这些研究表明,微丝和微管对于线粒体网的运输都是必需的。 FICS测量表明,微丝控制短程(0.8–1.6μm)动力学,而微管负责长距离(> 1.6μm)的运输。本论文包括合着和先前发表的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号