首页> 外文学位 >Methods for performance optimization of latency-insensitive systems.
【24h】

Methods for performance optimization of latency-insensitive systems.

机译:延迟不敏感系统的性能优化方法。

获取原文
获取原文并翻译 | 示例

摘要

While enabling the integration of hundreds of millions of transistors on a chip, nanometer technologies exacerbate existing challenges such as the design productivity gap and the timing closure problem. Latency-insensitive design (LID) has been proposed as a correct-by-construction methodology to cope with these problems without requiring major changes to the traditional design flows that are based on the synchronous paradigm. LID helps designers (1) to handle the complexity of system-level design by simplifying the assembling of pre-designed cores and (2) to meet the target clock frequency by simplifying the pipelining of global interconnect wires. On the other hand, the application of LID may lead to a decrease of the system's data-processing throughput. In fact, for high-performance designs the original timing closure problem may translate into a throughput-closure problem. I present a collection of research contributions for the optimization and validation of latency-insensitive systems that are applicable at different stages of the design process. At the register-transfer level I propose new designs of the LID building blocks, i.e., shell interfaces and relay stations, that are based on a simplified latency-insensitive protocol as well as a new logic synthesis optimization technique that takes advantage of functional-independence conditions to increase the data-processing throughput. At the physical-design level I propose new throughput-driven partitioning and throughput-preserving merging algorithms incorporated in a new physical synthesis flow to improve the performance of a latency-insensitive system. The validation of the proposed contributions is performed through a combination of formal methods and experimental results, which include two designs of a system-on-chip with industrial nanometer technology processes.
机译:纳米技术可以在芯片上集成数亿个晶体管的同时,加剧了现有挑战,例如设计生产率差距和时序收敛问题。延迟不敏感设计(LID)已被建议作为一种按构造正确的方法来解决这些问题,而无需对基于同步范式的传统设计流程进行重大更改。 LID可以帮助设计人员(1)通过简化预先设计的内核的组装来处理系统级设计的复杂性,以及(2)通过简化全局互连线的流水线来满足目标时钟频率。另一方面,LID的应用可能会导致系统的数据处理吞吐量降低。实际上,对于高性能设计,原始的时序关闭问题可能会转化为吞吐量关闭问题。我提出了一组对优化和验证对延迟不敏感的系统的研究成果,这些系统适用于设计过程的不同阶段。在寄存器传输级别,我提出了基于简化的对延迟不敏感的协议以及利用功能独立性的新逻辑综合优化技术的LID构建块(即外壳接口和中继站)的新设计。增加数据处理吞吐量的条件。在物理设计级别,我提出了新的吞吐量驱动的分区和吞吐量保留合并算法,这些算法合并在新的物理综合流程中,以提高对延迟不敏感的系统的性能。通过形式化方法和实验结果的结合来对提出的贡献进行验证,其中包括采用工业纳米技术工艺的片上系统的两种设计。

著录项

  • 作者

    Li, Cheng-Hong.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号