首页> 外文学位 >Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility.
【24h】

Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility.

机译:高温氦气测试设施中扩散键合紧凑型换热器的设计,制造,性能测试和建模。

获取原文
获取原文并翻译 | 示例

摘要

Very High-Temperature Reactor (VHTR) is a leading candidate for the U.S. Department of Energy's Next Generation Nuclear Power Plant (NGNP) project. It is a helium gas-cooled reactor with very high reactor core outlet temperatures (800-950°C) and offers high-efficiency electricity generation and a broad range of process heat applications, such as coal liquefaction, coal gasification, and oil recovery from shale. To efficiently transfer the core thermal energy to a secondary fluid, high-temperature and high integrity intermediate heat exchangers (IHXs) with high effectiveness are required. While there is no proven IHX concept for NGNP applications yet, a concept called printed circuit heat exchangers (PCHEs) appears most promising. The current research focuses on the design, fabrication, thermal-hydraulic performance testing, and modeling of PCHEs under high operating temperatures and pressures.;PCHEs are plate-type heat exchangers, fabricated by photochemical machining and diffusion bonding. In the current research work, both these fabrication techniques have been demonstrated on Alloy 617 plates, a high-temperature candidate material for VHTR structural components. Two counter-current flow PCHEs have been designed and fabricated using Alloy 617 plates and are installed in a small-scale high-temperature helium test facility (HTHF). The HTHF has been designed and constructed at The Ohio State University as part of this research to facilitate experiments at temperatures and pressures up to 800°C and 3 MPa, respectively.;Microstructural and mechanical characterizations studies performed on diffusion bonded Alloy 617 specimens are discussed. This study provided confidence from a safety view point insofar as the operation of the heat exchangers, under high temperature and pressure conditions in the HTHF. Performance testing of the two counter-flow PCHEs in the test facility has been completed at varied operating temperatures, helium pressures, and helium flow rates. The PCHE inlet temperature and pressure were varied from 85-390°C/1.0-2.7 MPa for the cold side and 208-790°C/1.0-2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. The maximum helium temperature that has reached at the exit of the main heater is 823oC. This range of mass flow rates corresponds to PCHE channel Reynolds number of 950-4,100 for the cold side and 900-3,900 for the hot side (corresponding to laminar and laminar-to-turbulent transition flow regimes). The experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, numerical and theoretical treatment of hydrodynamically developing and hydrodynamically fully developed laminar flow through a semicircular duct is presented. In summary, the PCHE testing at high temperatures and pressures and the experience accumulated during the design and construction of the HTHF and the PCHEs will be of value to the high-temperature reactor research.
机译:高温反应堆(VHTR)是美国能源部下一代核电站(NGNP)项目的主要候选人。它是一种氦气冷却反应堆,具有很高的反应堆堆芯出口温度(800-950°C),并提供高效发电和广泛的过程供热应用,例如煤液化,煤气化和从中回收油页岩。为了有效地将堆芯热能转移到二次流体中,需要高效的高温高完整性中间热交换器(IHX)。尽管尚无成熟的用于NGNP的IHX概念,但一种被称为印刷电路热交换器(PCHE)的概念似乎最有前途。目前的研究重点是在高工作温度和压力下对PCHE进行设计,制造,热工性能测试和建模。PCHE是通过光化学加工和扩散结合制造的板式热交换器。在当前的研究工作中,这两种制造技术已在Alloy 617板上得到了证明,Alloy 617板是VHTR结构部件的高温候选材料。已使用Alloy 617板设计和制造了两个逆流PCHE,并将其安装在小型高温氦气测试设备(HTHF)中。作为这项研究的一部分,HTHF是由俄亥俄州立大学设计和制造的,以方便分别在高达800°C和3 MPa的温度和压力下进行实验;讨论了对扩散结合的617合金试样进行的微结构和力学表征研究。从换热器在高温高压条件下在HTHF中运行的安全角度出发,这项研究提供了信心。在不同的工作温度,氦气压力和氦气流速下,已经完成了测试设施中两个逆流PCHE的性能测试。在改变氦气质量流量的同时,PCHE入口温度和压力分别在冷侧为85-390°C / 1.0-2.7 MPa和热侧为208-790°C / 1.0-2.7 MPa。从15到49公斤/小时。主加热器出口处达到的最高氦气温度为823oC。该质量流率范围对应于冷侧的PCHE通道雷诺数950-4,100,热侧的900-900-3900(对应于层流和层流到湍流的过渡流态)。分析了实验数据的PCHE传热表面的压降和传热特性,并与文献中可用的模型和相关性进行了比较。此外,提出了通过半圆形管道的水动力发展和水动力充分发展的层流的数值和理论处理。总之,高温高压下的PCHE测试以及在HTHF和PCHE的设计和建造过程中积累的经验将对高温反应器的研究具有价值。

著录项

  • 作者

    Mylavarapu, Sai K.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号