首页> 外文学位 >Rapid path-planning algorithms for autonomous proximity operations of satellites.
【24h】

Rapid path-planning algorithms for autonomous proximity operations of satellites.

机译:用于卫星自主接近操作的快速路径规划算法。

获取原文
获取原文并翻译 | 示例

摘要

Autonomous proximity operations (APOs) can be bifurcated into two phases: (i) close-range rendezvous and (ii) final approach or endgame. For each APO phase, algorithms capable of real-time path planning provide the greatest ability to react to “unmodeled” events, thus enabling the highest level of autonomy. This manuscript explores methodologies for real-time computation of APO trajectories for both APO phases.;For the close-range rendezvous trajectories, an Adaptive Artificial Potential Function (AAPF) methodology is developed. The AAPF method is a modification of the Artificial Potential Function (APF) methodology which has favorable convergence characteristics. Building on these characteristics, the modification involves embedding the system dynamics and a performance criterion into the APF formulation resulting in a tunable system. Near-minimum time and/or near-minimum fuel trajectories are obtained by selecting the tuning parameter. Monte Carlo simulations are performed to assess the performance of the AAPF methodology.;For the final approach or endgame trajectories, two methodologies are considered: a Picard Iteration (PI) and a Homotopy Continuation (HC). Problems in this APO phase are typically solved as a finite horizon linear quadratic (LQ) problem, which essentially are solved as a final value problem with a Differential Riccati Equation (DRE). The PI and HC methods are well known tools for solving differential equations and are utilized in this effort to provide solutions to the DRE which are amenable to real-time implementations; i.e., they provide solutions which are functionals to be evaluated real-time. Several cases are considered and compared to the classical DRE solution.
机译:自主接近操作(APO)可以分为两个阶段:(i)近距离会合和(ii)最终进近或最终战斗。对于每个APO阶段,能够进行实时路径规划的算法提供了对“未建模”事件做出反应的最大能力,从而实现了最高水平的自治性。该手稿探索了两个APO相的APO轨迹的实时计算方法;对于近距离会合轨迹,开发了一种自适应人工势函数(AAPF)方法。 AAPF方法是对人工势函数(APF)方法的改进,具有良好的收敛特性。基于这些特性,修改涉及将系统动力学和性能标准嵌入到APF公式中,从而形成可调整的系统。通过选择调整参数,可以获得最接近时间和/或最接近燃料的轨迹。进行蒙特卡洛模拟以评估AAPF方法的性能。对于最终进场或最终轨迹,考虑两种方法:皮卡德迭代(PI)和同伦连续(HC)。此APO阶段中的问题通常以有限水平线性二次(LQ)问题解决,而本质上是通过微分Riccati方程(DRE)解决为最终值问题。 PI和HC方法是解决微分方程的众所周知的工具,并在这项工作中被用来为DRE提供适合实时实现的解决方案。即,它们提供了可以实时评估功能的解决方案。考虑了几种情况,并将其与经典DRE解决方案进行了比较。

著录项

  • 作者

    Munoz, Josue David.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号