首页> 外文学位 >Navigating reactor safety in catalytic microchannel reactors.
【24h】

Navigating reactor safety in catalytic microchannel reactors.

机译:催化微通道反应器中安全的反应器导航。

获取原文
获取原文并翻译 | 示例

摘要

High temperature catalytic reactions are being intensely studied since many decades due to their large industrial potential, such as in pyrolysis, total oxidation (i.e. combustion) and partial oxidation of hydrocarbons. The reactions are characterized by extreme reaction temperatures (T > 1000°C) where homogeneous (i.e. non-catalytic gas phase) reactions can occur in parallel to catalytic reactions. This occurrence of homogeneous reactions is typically an undesired feature, since it complicates the understanding of reaction mechanisms, leads to selectivity losses, and often poses a safety hazard due to potentially explosive behavior [1]. Since free surfaces tend to bind radical species, eventually lead to a quenching of gas-phase reactions.; Microreactors, i.e. chemical reactors with characteristic dimensions in the sub-millimeter range, hold great promise for fundamental studies of existing processes offering small thermal inertia, high heat and mass transport rates, compactness etc. Due to their large surface-to-volume ratio, microreactors can be expected to suppress undesirable gas phase reactions and thus form safe reactor configurations for highly explosive processes.; In the present study, we numerically investigate the reactive flow of H2/air mixtures in a microchannel to gain insights into the reason for the absence of explosion observed in previous experiments [2, 3]. The H2 oxidation reaction is chosen as model reaction due to its high exothermicity and wide flammability range. It also constitutes an important sub-set of reactions in hydrocarbon oxidation.; In a two-dimensional boundary layer numerical model, we used coupled mechanisms with detailed elementary-step kinetics for gas-phase and catalytic surface reactions. The influence of different wall materials, reactor dimension, feed conditions and reaction pressure on the coupling of heterogeneous and homogeneous reaction pathways in the microreactor was studied. The results demonstrate that the attainability of 'intrinsic safety' in microchannel reactors is strongly dependent on a complex interplay between homogeneous and heterogeneous reaction pathways in the individual reaction system. In particular, it is found that intrinsic reactor safety breaks down at sufficiently high reactor pressure. Generalized equations for the current reaction systems are derived.; As an outlook, other industrially relevant reaction systems, i.e. CO oxidation and NOx formation, are preliminary investigated with respect to the effect of heterogeneous-homogeneous interactions and radical quenching in particular, on the behaviour of these reaction systems.
机译:由于高温催化反应的巨大工业潜力,例如在热解,完全氧化(即燃烧)和碳氢化合物的部分氧化中,由于其巨大的工业潜力,几十年来一直在深入研究。该反应的特征在于极端的反应温度(T> 1000℃),在该温度下,均相(即非催化气相)反应可与催化反应同时发生。均相反应的发生通常是不希望有的特征,因为它使对反应机理的理解变得复杂,导致选择性损失,并且由于潜在的爆炸行为而经常造成安全隐患[1]。由于自由表面倾向于结合自由基,最终导致气相反应淬灭。微型反应器,即特征尺寸在亚毫米范围内的化学反应器,对于现有工艺的基础研究具有广阔的前景,这些工艺具有较小的热惯性,较高的传热和传质速率,紧凑性等。由于它们的表面积与体积之比大,微反应器有望抑制不希望的气相反应,从而为高爆炸性工艺形成安全的反应器配置。在本研究中,我们对微通道中H2 /空气混合物的反应流进行了数值研究,以深入了解先前实验中未观察到爆炸的原因[2,3]。 H 2氧化反应因其高放热和宽广的可燃性而被选作模型反应。它也是烃氧化反应的重要子集。在二维边界层数值模型中,我们使用了具有详细的基本步骤动力学的耦合机制来进行气相和催化表面反应。研究了不同壁材料,反应器尺寸,进料条件和反应压力对微反应器中非均相和均相反应路径耦合的影响。结果表明,微通道反应器中“本质安全性”的可获性很大程度上取决于单个反应系统中均相和异相反应路径之间的复杂相互作用。特别地,发现在足够高的反应堆压力下固有的反应堆安全性被破坏。推导了当前反应体系的广义方程。展望未来,针对异质-均质相互作用和自由基猝灭对这些反应系统的行为的影响,初步研究了其他与工业相关的反应系统,即CO氧化和NOx的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号