首页> 外文学位 >Wavefront Sensing and High Resolution Adaptive Optics Imaging in the Living Rodent Eye.
【24h】

Wavefront Sensing and High Resolution Adaptive Optics Imaging in the Living Rodent Eye.

机译:啮齿动物活体眼中的波前传感和高分辨率自适应光学成像。

获取原文
获取原文并翻译 | 示例

摘要

The rodent has become an increasingly valuable model for human diseases and development due to its availability for genetic manipulations. Non-invasive microscopic imaging of the rodent retina would allow tracking of retinal development, disease progression, and the efficacy of therapy in single animals. Correction of the eye’s aberrations using adaptive optics (AO) could improve the resolution of in vivo rodent retinal images [1, 2], but previous attempts have been limited by the small size of its eye and the difficulty in measuring its aberrations due to poor Shack-Hartmann wavefront sensor (SHWS) spot quality.;The work in this thesis describes methods developed to measure the rodent eye optics and to optimize its retinal image quality in vivo. Our first attempt was modifying a confocal fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO) originally built for imaging the primate and human eye [3] to accommodate the rat eye. Despite achieving in vivo resolution sufficient to resolve sub-cellular structures in fluorescent ganglion cells, problems were identified with aberration measurements and AO image quality. We then constructed a SHWS customized for the small mouse eye, and found a solution to the aberration measurement problem. The custom designed SHWS can favor light from a specific retinal layer and provide good wavefront spot quality. This wavefront sensor was incorporated into a confocal AOSLO custom designed for the mouse eye. High quality images were obtained in the mouse retina revealing multiple cell layers, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries/blood flow, and ganglion cell bodies and fine processes. The in vivo resolution of the system was directly characterized to be sub-ìm laterally, and ∼10 μm axially. This fine resolution has allowed classification of ganglion cells in vivo. The value of the instrument was also demonstrated in two functional imaging scientific studies.
机译:由于可用于基因操作,啮齿动物已成为对人类疾病和发展越来越有价值的模型。啮齿动物视网膜的非侵入性显微成像将允许跟踪单个动物的视网膜发育,疾病进展和治疗效果。使用自适应光学系统(AO)矫正眼睛的像差可以提高体内啮齿类动物视网膜图像的分辨率[1,2],但是先前的尝试由于其眼睛的小尺寸和由于其差而难以测量其像差而受到限制Shack-Hartmann波前传感器(SHWS)的斑点质量。本论文的工作描述了开发的用于测量啮齿动物眼睛光学器件并优化其体内视网膜图像质量的方法。我们的第一个尝试是修改共焦荧光自适应光学扫描激光检眼镜(AOSLO),该检眼镜最初用于对灵长类动物和人眼进行成像[3]以适应大鼠的眼睛。尽管获得了足以解决荧光神经节细胞亚细胞结构的体内分辨率,但仍发现像差测量和AO图像质量存在问题。然后,我们构建了为小老鼠的眼睛定制的SHWS,并找到了解决像差测量问题的方法。定制设计的SHWS可以偏向特定视网膜层的光线,并提供良好的波前光斑质量。该波前传感器被并入了专为鼠标设计的共聚焦AOSLO。在小鼠视网膜中获得了高质量的图像,揭示了多个细胞层,包括感光体镶嵌,神经纤维束,细微的毛细血管/血流以及神经节细胞体和细小过程。该系统的体内分辨率直接表征为横向亚微米,轴向约10μm。这种精细的分辨率使体内的神经节细胞得以分类。在两项功能成像科学研究中也证明了该仪器的价值。

著录项

  • 作者

    Geng, Ying.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Health Sciences Ophthalmology.;Physics Optics.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号