首页> 外文学位 >Formation, characterization, and flow dynamics of nanostructure modified sensitive and selective gas sensors based on porous silicon.
【24h】

Formation, characterization, and flow dynamics of nanostructure modified sensitive and selective gas sensors based on porous silicon.

机译:基于多孔硅的纳米结构改性敏感和选择性气体传感器的形成,表征和流动动力学。

获取原文
获取原文并翻译 | 示例

摘要

Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. Both top-down and bottom-up approaches are utilized in the process. A nano-pore coated micro-porous silicon surface is modified selectively for sub-ppm detection of NH3, PH3 , NO, H2S, SO2. The selective depositions include electrolessly generated SnO2, CuxO, Au xO, NiO, and nanoparticles such as TiO2, MgO doped TiO 2, Al2O3, and ZrO2. Flow dynamics are analyzed via numerical simulations and response data. An array of sensors is formed to analyze mixed gas response. A general coating selection method for chemical sensors is established via an extrapolation on the inverse of the Hard-Soft Acid-Base concept.;In Chapter 1, the current state of the porous silicon gas sensor research is reviewed. Since metal oxide thin films, and, recently, nanowires are dominantly used for sensing application, the general properties of metal oxides are also discussed in this chapter. This chapter is concluded with a discussion about commercial gas sensors and the advantages of using porous silicon as a sensing material. The PS review discussed at the beginning of this chapter is an overview of the following publication: (1) "The Potential of Porous Silicon Gas Sensors", Serdar Ozdemir, James L. Gole, Current Opinion in Solid State and Materials Science, 11, 92-100 (2007).;In Chapter 2, porous silicon formation is explained in detail. Interesting results of various silicon anodization experiments are discussed. In the second part of this chapter, the microfabrication process of porous silicon conductometric gas sensors and gas testing set up are briefly introduced.;In chapter 3, metal oxide nanoparticle/nanocluster formation and characterization experiments via SEM and XPS analysis are discussed.;Chapter 4 is an overview of the test results for various concentrations NH3, NO, NO2 and PH3. The interaction strengths between the test gases and various nanoparticles on porous silicon are measured. The flow dynamics in the micro- and nanoporous regime is analyzed by using experimental response data and numerical simulations. The results in this chapter are partially published in the following articles: (1) "Porous Silicon Gas Sensors for Room Temperature Detection of Ammonia and Phosphine ", 214th Meeting of ECS: Honolulu, Hawaii Oct 12-17, 2008, S. Ozdemir, J.L. Gole, ECS Trans. 16 (11), 379 (2008). (2) "A Phosphine Detection Matrix Using Porous Silicon Gas Sensors" S. Ozdemir, J.L. Gole, Sensors and Actuators B, 151, 274-280 (2010). (3) "A Nanostructure Modified Porous Silicon Gas Sensor Detection Matrix for NO with Demonstration of the Transient Conversion of NO to NO2", Serdar Ozdemir, Thomas B. Osburn, James L. Gole, submitted to Journal of Electrochemical Society. (4) "Selectivity Improvement and Response Time Scale of Porous Silicon Conductometric Gas Sensors" S. Ozdemir, J. L. Gole, ECS Transactions, Volume 33, Issue 8, pg 111-115.;In chapter 5, a model is proposed for selectivity improvements in PS gas sensors based on Inverse of Hard Soft Acid Base interactions. An extended version of this chapter is published in the following publication: (1) " Nanostructure directed physisorption vs. chemisorption at semiconductor interfaces: the inverse of the hard-soft acid-base (HSAB) concept", J.L.Gole, S. Ozdemir, ChemPhysChem, 11, 2573.2581 (2010).;Chapter 6 is a brief conclusion of the results discussed in this thesis.
机译:纳米孔覆盖的微孔硅界面已经通过用于气体传感器应用的电化学蚀刻形成。快速可逆和敏感的气体传感器已经被制造出来。在此过程中,使用了自上而下和自下而上的方法。选择性地修饰了纳米孔涂层的微孔硅表面,用于亚ppm检测NH3,PH3,NO,H2S,SO2。选择性沉积包括无电产生的SnO2,CuxO,AuxO,NiO和纳米颗粒,例如TiO2,掺杂MgO的TiO 2,Al2O3和ZrO2。通过数值模拟和响应数据来分析流动动力学。形成传感器阵列以分析混合气体响应。通过对硬-软酸-碱概念的反推外推法建立了化学传感器的通用涂层选择方法。第一章综述了多孔硅气体传感器的研究现状。由于金属氧化物薄膜以及近来的纳米线主要用于传感应用,因此本章还将讨论金属氧化物的一般特性。本章的结尾讨论了商用气体传感器以及使用多孔硅作为传感材料的优势。本章开头讨论的PS综述是对以下出版物的概述:(1)“多孔硅气体传感器的潜力”,Serdar Ozdemir,James L. Gole,《固态和材料科学最新观点》,第11期, 92-100(2007)。;在第二章中,详细解释了多孔硅的形成。讨论了各种硅阳极氧化实验的有趣结果。在本章的第二部分中,简要介绍了多孔硅电导率气体传感器的微细加工过程和气体测试装置。第三章,讨论了通过SEM和XPS分析对金属氧化物纳米粒子/纳米团簇的形成和表征实验。图4是各种浓度的NH 3,NO,NO 2和PH 3的测试结果的概述。测量了测试气体与多孔硅上的各种纳米颗粒之间的相互作用强度。通过使用实验响应数据和数值模拟分析了微孔和纳米孔状态下的流动动力学。本章的结果部分发表在以下文章中:(1)“用于室温氨和磷化氢检测的多孔硅气体传感器”,ECS第214次会议:檀香山,夏威夷,2008年10月12日至17日,S。Ozdemir, JL Gole,ECS Trans。 16(11),379(2008)。 (2)“使用多孔硅气体传感器的磷化氢检测矩阵”,S。Ozdemir,J.L。Gole,传感器和致动器B,151,274-280(2010)。 (3)“具有NO到NO2瞬态转换的NO的纳米结构改性多孔硅气体传感器检测矩阵”,Serdar Ozdemir,Thomas B. Osburn,James L. Gole提交给《电化学学会杂志》。 (4)“多孔硅电导率气体传感器的选择性改进和响应时间尺度”,S。Ozdemir,JL Gole,《 ECS交易》,第33卷,第8期,第111-115页。;在第5章中,提出了用于选择性改进的模型。基于硬质软酸碱相互作用的逆反应的PS气体传感器。在以下出版物中发布了本章的扩展版本:(1)“纳米结构指导的半导体界面的物理吸附与化学吸附:硬-软酸碱(HSAB)概念的反面”,JLGole,S。Ozdemir, ChemPhysChem,11,2573.2581(2010).;第6章是本文讨论的结果的简要结论。

著录项

  • 作者

    Ozdemir, Serdar.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号