首页> 外文学位 >Cavity enhanced spectroscopic techniques for in situ measurement: Pushing the limits of sensitivity.
【24h】

Cavity enhanced spectroscopic techniques for in situ measurement: Pushing the limits of sensitivity.

机译:腔增强光谱技术,用于原位测量:推动灵敏度极限。

获取原文
获取原文并翻译 | 示例

摘要

New technology is needed to address questions of midlatitude ozone loss, transport across the tropopause, and coupling between chemistry and climate change. Cavity enhanced absorption spectroscopy (LEAS) offers the necessary sensitivity while maintaining a robust design capable of withstanding the rigors of flight. Moreover, LEAS measurements can be tied directly to reliable, traceable standards and physical constants; yet, the measurement technology is sufficiently general to observe a broad range of chemical species. The challenge to implementing such systems becomes entirely focussed on identifying a feasible light source. Fortunately, developments in nonlinear photonics and fiber technology have yielded many new options---appropriate for both CEAS systems and others.; Passive cavity enhanced systems demonstrate noise equivalent absorption of 2.4 x 10-11 cm-1 / Hz for cavity ringdown spectroscopy (CRDS), while integrated cavity output spectroscopy (ICOS) systems demonstrate a noise equivalent absorption of 1.9 x 10-12 cm-1/ Hz . Such ultrasensitive instruments are sufficient to offer 50 ppt sensitivity of NO2 in one second at 585 nm, or signal-to-noise of 10 to 1 for depletion ratios (deltaD) for water in the lower stratosphere. A new CEAS technique, the cavity output autocorrelation spectroscopic technique (COAST), is developed which is far more robust than other cavity based techniques while requiring far fewer supporting electronics. This technique will provide an excellent option for low maintenance, routine monitoring applications.; By combining these techniques with new light sources, miniaturized detectors, and distributed processing electronics, miniature instrumentation can be developed for NASA's Altair unmanned aerial vehicle (UAV). The combined capabilities of this flight platform and the new instrumentation offers the ability to address climate change, the ramifications of pollution, and atmospheric transport in entirely new ways.
机译:需要新技术来解决中纬度臭氧流失,对流层顶运输以及化学与气候变化之间的耦合问题。腔增强吸收光谱(LEAS)提供了必要的灵敏度,同时保持了能够承受飞行严酷条件的坚固设计。此外,LEAS测量可以直接与可靠,可追溯的标准和物理常数联系在一起;然而,测量技术足够通用,可以观察到广泛的化学物种。实施此类系统的挑战完全集中在确定可行的光源上。幸运的是,非线性光子学和光纤技术的发展产生了许多新的选择-适用于CEAS系统和其他系统。无源腔增强系统对腔衰荡光谱(CRDS)的噪声等效吸收为2.4 x 10-11 cm-1 / Hz,而集成腔输出光谱系统(ICOS)系统的噪声等效吸收为1.9 x 10-12 cm-1 /赫兹这种超灵敏的仪器足以在585 nm的频率下在一秒钟内提供50 ppt的NO2灵敏度,或者对于低平流层中水的损耗比(deltaD)而言,信噪比为10:1。已开发出一种新的CEAS技术,即腔输出自相关光谱技术(COAST),它比其他基于腔的技术要坚固得多,同时所需的支持电子设备也少得多。该技术将为低维护,常规监控应用提供极好的选择。通过将这些技术与新的光源,小型化探测器和分布式处理电子设备相结合,可以为NASA的Altair无人机(UAV)开发小型仪器。该飞行平台和新仪器的综合功能提供了以全新的方式应对气候变化,污染后果和大气运输的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号