首页> 外文学位 >Radiative properties of emerging materials and radiation heat transfer at the nanoscale.
【24h】

Radiative properties of emerging materials and radiation heat transfer at the nanoscale.

机译:新兴材料的辐射特性和纳米级的辐射热传递。

获取原文
获取原文并翻译 | 示例

摘要

A negative index material (NIM), which possesses simultaneously negative permittivity and permeability, is an emerging material that has caught many researchers' attention after it was first demonstrated in 2001. It has been shown that electromagnetic waves propagating in NIMs have some remarkable properties such as negative phase velocities and negative refraction and hold enormous promise for applications in imaging and optical communications. This dissertation is centered on investigating the unique aspects of the radiative properties of NIMs. Photon tunneling, which relies on evanescent waves to transfer radiative energy, has important applications in thin-film structures, microscale thermophotovoltaic devices, and scanning thermal microscopes. With multilayer thin-film structures, photon tunneling is shown to be greatly enhanced using NIM layers. The enhancement is attributed to the excitation of surface or bulk polaritons, and depends on the thicknesses of the NIM layers according to the phase matching condition. A new coherent thermal emission source is proposed by pairing a negative permittivity (but positive permeability) layer with a negative permeability (but positive permittivity) layer. The merits of such a coherent thermal emission source are that coherent thermal emission occurs for both s- and p-polarizations, without use of grating structures. Zero power reflectance from an NIM for both polarizations indicates the existence of the Brewster angles for both polarizations under certain conditions. The criteria for the Brewster angle are determined analytically and presented in a regime map. The findings on the unique radiative properties of NIMs may help develop advanced energy conversion devices. Motivated by the recent advancement in scanning probe microscopy, the last part of this dissertation focuses on prediction of the radiation heat transfer between two closely spaced semi-infinite media. The objective is to investigate the dopant concentration of silicon on the near-field radiation heat transfer. It is found that the radiative energy flux can be significantly augmented by using heavily doped silicon for the two media separated at nanometric distances. Large enhancement of radiation heat transfer at the nanoscale may have an impact on the development of near-field thermal probing and nanomanufacturing techniques.
机译:负折射率材料(NIM)同时具有负介电常数和导磁率,是一种新兴材料,在2001年首次被证明后就引起了许多研究人员的注意。已经证明,在NIM中传播的电磁波具有一些非凡的特性,例如作为负相速度和负折射,在成像和光通信中的应用前景广阔。本文主要研究NIMs辐射特性的独特方面。光子隧穿依赖于van逝波来传递辐射能,在薄膜结构,微尺度热光电器件和扫描热显微镜中具有重要的应用。对于多层薄膜结构,使用NIM层可显着增强光子隧穿。增强归因于表面或体极化子的激发,并取决于相位匹配条件,取决于NIM层的厚度。通过将负介电常数(但正介电常数)层与负介电常数(但正介电常数)层配对,提出了一种新的相干热源。这种相干热发射源的优点在于,在不使用光栅结构的情况下,对于S极化和P极化都会发生相干热发射。来自NIM的两个偏振的零功率反射率表示在某些条件下两个偏振的布儒斯特角存在。布鲁斯特角的标准通过分析确定,并显示在状态图中。关于NIM独特的辐射特性的发现可能有助于开发先进的能量转换设备。受扫描探针显微镜技术的最新发展的推动,本论文的最后一部分着重于预测两种紧密间隔的半无限介质之间的辐射热传递。目的是研究近场辐射传热中硅的掺杂浓度。发现通过将重掺杂的硅用于在纳米距离处分离的两种介质,可以显着增加辐射能通量。纳米级辐射传热的大幅增强可能对近场热探测和纳米制造技术的发展产生影响。

著录项

  • 作者

    Fu, Ceji.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号