首页> 外文学位 >Direct sampling mass spectrometry for the study of polynuclear aromatic hydrocarbons and other combustion intermediates and products.
【24h】

Direct sampling mass spectrometry for the study of polynuclear aromatic hydrocarbons and other combustion intermediates and products.

机译:直接采样质谱法用于研究多环芳烃和其他燃烧中间体和产物。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is the analysis of combustion intermediates and products from non-premixed flames, in particular polynuclear aromatic hydrocarbons (PAH). These molecules have often been proposed as key intermediates in the pathways that lead from fuel to soot formation. Due to their large size, these species have broad absorption and fluorescence bands and individual PAH have not been optically quantified in flames. Generally, PAH and small hydrocarbons are examined through microprobe extraction from the flame followed by mass spectrometry. In the past, our laboratory has used microprobe extraction followed by electron impact mass spectrometry using 25 eV ionization energy. 1 Unfortunately, most atoms and molecules have low ionization efficiencies at this ionization energy. This reduces signal levels and key hydrocarbons and PAH, which often have concentrations at the ppm level, could not be quantified.;In this work, electron impact mass spectrometry (EI/MS) with an ionization energy of 70 eV was used. Most atoms and molecules have peak ionization efficiencies at 70 eV. This dramatically increases signal levels and even trace species such as naphthalene, which has peak concentrations on the order of 1 ppm in the systems studied in this work, could be quantified. In addition, 70 eV ionization energy is commonly used in mass spectral analysis and standard 70 eV ionization cross sections and fragmentation patterns are readily available in the NIST Standard Reference Database for most species.2 However, extensive fragmentation is associated with spectra collected from species ionized at this high of an ionization energy.;In order to deconvolute the spectra collected from the flame samples, we have developed a multilinear regression procedure that fits a simulated spectrum to the experimental spectrum to obtain species concentrations. The procedure uses a simplex algorithm for parameter optimization. The simulated spectrum is created using the ionization cross sections and fragmentation patterns of a select list of species expected to be found in the combustion systems studied here. The species concentrations are quantified using their signal relative to argon which is added to the fuel stream in the same concentration present in the laboratory air.;The microprobe extraction 70 eV EI/MS technique was employed to examine a host of combustion systems. These studies were mainly exploratory in nature and many represent the first measurements of trace hydrocarbons and PAH in the combustion systems examined.;The goal of these studies is two-fold. The first is to characterize base-case (unperturbed) flames through the measurement of major and minor species concentrations. The base-case systems studied in this work, a methane flame formed on a Wolfhard-Parker burner, a methane flame formed on a Santoro burner, and a 65% methane flame formed on a burner developed in collaboration with Yale University, were all chosen based on the availability of previously acquired major species concentrations and temperature data in the combustion literature. This provided an opportunity to validate the EI/MS technique and to add to the species concentration data available for these systems. For instance, Chapter 5 shows that the EI/MS measurements from the 65% methane flame are comparable to Raman measurements and the computational results of our collaborators from Yale University from the same flame system.;The second goal of these studies is to analyze the effects of perturbations to the fuel of the base-case flames. Chapter 6 explores time-dependent, flickering flames. These flames have combustion conditions not found in their steady counterparts. For instance, EI/MS measurements presented in Chapter 6 show regions of increased acetylene and PAH concentrations in the high temperature reaction zones of the flame at certain times in the course of the time-dependent flame cycle.;The last two chapters analyze the combustion of two different fuels which exhibit very different combustion behaviors. In a methane non-premixed flame, decomposition of the fuel is initiated through radical attack. In Chapter 7, combustion analysis of pyridine, a nitrogen-containing fuel found in coal, suggests that unlike methane, pyridine is most likely consumed through a combination of unimolecular and bimolecular processes under non-premixed conditions. Chapter 8 presents results from the combustion of methyl butanoate (MB), a molecule that has received much recent attention for its role as a surrogate in the analysis of biodiesel combustion. EI/MS analysis of an MB-doped flame reveals that decomposition of MB mainly occurs through unimolecular decomposition and not through radical attack. The molecularity of the mechanism through which a species decomposes can affect the types and the conditions under which combustion intermediates are formed. For instance, results presented in Chapter 8 show that the unimolecular decomposition of MB results in the formation of large amounts of radicals in relatively cool regions of the flame, promoting the formation of acetylene and PAH.
机译:这项工作的目的是分析来自非预混火焰的燃烧中间体和产物,特别是多核芳烃(PAH)。这些分子经常被提议为从燃料到烟灰形成的途径中的关键中间体。由于它们的大尺寸,这些物质具有宽广的吸收和荧光带,单个PAH尚未在火焰中进行光学定量。通常,通过从火焰中提取微探针,然后进行质谱分析,来检查PAH和少量碳氢化合物。过去,我们的实验室先使用微探针萃取,然后再使用25 eV电离能进行电子碰撞质谱分析。 1不幸的是,大多数原子和分子在这种电离能下的电离效率很低。这降低了信号水平,并且无法量化浓度通常在ppm级的关键碳氢化合物和PAH。在这项工作中,使用了电离能为70 eV的电子冲击质谱(EI / MS)。大多数原子和分子在70 eV时具有峰值电离效率。这可以显着提高信号水平,甚至可以量化痕量物质,例如萘,在本研究工作的系统中其峰值浓度约为1 ppm。此外,质谱分析中通常使用70 eV电离能,并且在大多数物种中,NIST标准参考数据库中都提供了标准的70 eV电离截面和碎片图谱。2但是,广泛的碎片化与从电离的物种收集的光谱有关为了使从火焰样品中收集的光谱反卷积,我们开发了一种多线性回归程序,该程序将模拟光谱与实验光谱拟合以获得物种浓度。该过程使用单纯形算法进行参数优化。使用预期在此处研究的燃烧系统中发现的物种的选定列表的电离截面和碎片化模式,可以创建模拟光谱。物种浓度通过使用相对于氩气的信号进行定量,该信号以与实验室空气中相同的浓度添加到燃料流中。采用微探针萃取70 eV EI / MS技术检查了许多燃烧系统。这些研究本质上主要是探索性的,许多研究是对所考察的燃烧系统中痕量烃和PAH的首次测量。这些研究的目标是双重的。首先是通过测量主要物种和次要物种的浓度来表征基本情况(不受干扰)的火焰。选择了在这项工作中研究的基本系统,在Wolfhard-Parker燃烧器上形成的甲烷火焰,在Santoro燃烧器上形成的甲烷火焰以及在与耶鲁大学合作开发的燃烧器上形成的65%甲烷火焰。基于燃烧文献中先前获取的主要物种浓度和温度数据的可用性。这提供了验证EI / MS技术并将这些系统可用的物种浓度数据添加到其中的机会。例如,第5章表明,使用65%甲烷火焰进行的EI / MS测量与拉曼测量以及耶鲁大学合作者在同一火焰系统上的计算结果具有可比性;这些研究的第二个目标是分析扰动对基壳火焰燃料的影响。第6章探讨了与时间有关的闪烁的火焰。这些火焰的燃烧条件在稳定火焰中没有。例如,第6章介绍的EI / MS测量显示了在随时间变化的火焰循环过程中的某些时间,火焰的高温反应区中乙炔和PAH浓度增加的区域。;最后两章分析了燃烧表现出截然不同的燃烧行为的两种不同的燃料。在未预混合的甲烷火焰中,燃料的分解是通过自由基攻击而引发的。在第7章中,吡啶(一种煤中的含氮燃料)的燃烧分析表明,与甲烷不同,吡啶最有可能在非预混合条件下通过单分子和双分子过程的组合而消耗掉。第8章介绍了丁酸甲酯(MB)燃烧的结果,该分子因其在生物柴油燃烧分析中的替代作用而备受关注。掺杂MB的火焰的EI / MS分析表明,MB的分解主要是通过单分子分解而不是通过自由基侵蚀发生的。物质分解的机理的分子性会影响形成燃烧中间体的类型和条件。例如,第8章介绍的结果表明,MB的单分子分解导致在火焰的相对凉爽区域中形成大量自由基,从而促进了乙炔和PAH的形成。

著录项

  • 作者

    Puccio, Maria Ann.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Chemistry Analytical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 337 p.
  • 总页数 337
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号