首页> 外文学位 >Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications.
【24h】

Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications.

机译:用于传感和光伏应用的光的等离子操纵。

获取原文
获取原文并翻译 | 示例

摘要

Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications.;To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation.;Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2.;At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.
机译:等离子技术是一个成功的科学和技术新领域,它利用金属纳米结构的专有光学特性来操纵和聚集纳米级的光。当光照射到金或银纳米颗粒的表面时,它可以激发称为表面等离激元的导电电子的集体振荡。该表面等离子体激元经历了两个阻尼过程。它可以衰减成光子,然后将等离激元能量重新释放为散射能,或者衰减成电子-空穴对,其激发能等于等离激元共振的能量,称为吸收。该高能电子随后经历载流子倍增,并最终以较低能量散射到电子中。我们使用时域有限差分法(FDTD)和有限元方法(Comsol)设计纳米尺度的结构,以用作集光的纳米天线,从而操纵其辐射和吸收特性,以用于传感和光伏应用。在远场中,我们以明暗等离子体激元模式重叠并相互耦合的方式设计了结构。该过程称为法诺共振,并在远场光谱中引入了透明窗口。同时,它增加了近场增强。我们将近场和远场的变化应用于SERS(表面增强拉曼光谱)和LSPR(局部表面等离振子共振)位移,以进行传感。我们用经典的谐波振荡器对Fano共振进行建模,并通过简单的运动方程式再现了相同的特征。我们使用该模型复制了来自不同几何形状的散射光谱,并解释了从纳米级金团簇结构获得的阴极发光结果。所有这些纳米天线的光学特性和应用都是由于等离激元能量向真空和限制光场的再发射能力,但是等离激元能量会衰减成高能载流子,而不是辐射。耦合到金属纳米天线中的光子会激发共振等离激元。会衰减成高能的热电子,注入到纳米天线-半导体界面上的势垒上方,从而产生光电流。我们设计的设备的潜在应用范围非常广泛。作为能够检测子带隙光子的基于硅的检测器,该设备可用于光伏设备中以收集太阳能。等离子体产生的热电子也可用于室温下H2分子的光催化解离。处于较高能态的热电子可以填充金属表面吸附的H2分子的反键轨道,从而触发H2分子的解离。目的是通过检测H2和D2两个同位素的单个解离检测HD分子的形成来证明金属光催化系统的高效率;最后,我们在金属纳米结构中引入了避雷针效应并研究了几何形状之间的关系测杆天线的特性和避雷针效应引起的电磁场增强。在长波长下,金属的行为就像是完美的等电位导体,并且所有场增强都是由于单个纳米粒子之间的交界处的电势下降而导致的。这种现象称为避雷针效应。通过设计适当的几何形状,我们能够利用这种效应在光谱的MIR区域中获得足够的电磁增强,从而观察到来自少数血红蛋白分子的SEIRA信号。我们的仿真表明,从该天线获得的场增强并不敏感地取决于波长,这是SEIRA光谱学的另一个优势。我们提供了一个分析模型来探索血红蛋白分子与Efield之间的耦合。我们使用该模型来研究分子对反射信号的定位作用。这项技术使我们能够实时检测诸如血红蛋白的分子的振动模式,并研究当分子暴露于不同环境条件下时它们的变化。

著录项

  • 作者

    Sobhani Khakestar, Heidar.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Nanotechnology.;Nanoscience.;Optics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号