首页> 外文学位 >Multiphase CFD Analysis and Shape-Optimization of Blood-Contracting Medical Devices.
【24h】

Multiphase CFD Analysis and Shape-Optimization of Blood-Contracting Medical Devices.

机译:血液收缩医疗器械的多相CFD分析和形状优化。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a framework for computational fluid dynamics (CFD) analysis and shape-optimization of blood-contacting medical devices. The first aim entailed CFD-driven automatic shape optimization of PediaFlowRTM miniature maglev pediatric heart-assist pump with the goal of improving efficiency and minimizing blood trauma. The blade shape of leeward stator was parameterized by two wrap angles and blade axial length. The result of optimization using a Design of Experiments-Nonlinear Programming by Quadratic Lagrangian (DOE-NLPQL) optimization technique greatly improved efficiency from 19.5% to 27.4%. Numerically predicted blood trauma was in good agreement with experimentally measured values. The second aim focused on optimization of a novel magnetic blood filter for severe malaria, mPharesis(TM). The objective was to maximize capture efficiency of malaria-infected red blood cells (pRBCs) with three independent design variables: channel height, pitch and flow rate. The pRBCs were modeled as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the pRBCs were numerically calculated inside a microchannel exposed to a periodic magnetic field gradient. The resulting length of the optimized design was reduced from 742 mm to 79.7 mm using the DOE-NLPQL optimization technique. The resulting capture efficiency was greatly increased by 57.7%: from 25.5% to 85.2%. The third aim was to develop a two-phase model of blood flow to elucidate the phenomenon of RBCs margination. Using the Theory of Interacting Continua, the plasma was assumed to behave as a Newtonian fluid whereas the RBCs were modeled as rigid spherical particles with viscosity dependent on the shear-rate and hematocrit. The nondimensional simulation of fully-developed steady flow revealed that the drag and lift forces were important interaction forces. Three-dimensional unsteady two-phase simulations predicted RBC depletion in the corner of a sudden expansion channel. The RBC depletion length was found to increase, with decreasing flow rate and hematocrit. The main outcome of this aim showed a qualitatively good agreement between two-phase flow simulation results and experimental data. Therefore, the efforts of multiphase flow and optimization studies have led to identify crucial design factors in the early stage of medical devices, as well as reduce development time and cost. The overall contributions of this dissertation are establishing cutting-edge optimization techniques, constructing a reliable blood trauma model, and implementing a three-dimensional two-phase blood flow code.;Keywords: blood pump; CFD; optimization; blood trauma; malaria; magnetic separation; paramagnetic particle; theory of interacting continua; two-phase flow; plasma; RBC; viscosity; drag force; lift force.
机译:本文提出了一种用于血液接触医疗设备的计算流体动力学(CFD)分析和形状优化的框架。第一个目标是PediaFlowRTM微型磁悬浮小儿心脏辅助泵的CFD驱动自动形状优化,目的是提高效率并最大程度地减少血液损伤。下风向定子的叶片形状通过两个包角和叶片轴向长度进行参数化。使用实验设计-二次拉格朗日非线性规划(DOE-NLPQL)优化技术的优化结果将效率从19.5%提高到27.4%。数值预测的血液创伤与实验测量值非常吻合。第二个目标集中在优化针对严重疟疾的新型磁性血液过滤器mPharesis(TM)。目的是通过三个独立的设计变量来最大程度地提高疟疾感染的红细胞(pRBC)的捕获效率:通道高度,螺距和流速。 pRBCs被建模为悬浮在牛顿流体中的顺磁性颗粒。在暴露于周期性磁场梯度的微通道内部,通过数值计算了pRBC的轨迹。使用DOE-NLPQL优化技术,优化设计的结果长度从742 mm减少到79.7 mm。最终的捕获效率大大提高了57.7%:从25.5%提高到85.2%。第三个目标是建立一个两阶段的血流模型,以阐明红细胞边缘化现象。使用相互作用连续体理论,假定血浆表现为牛顿流体,而将RBC建模为刚性球形颗粒,其粘度取决于剪切速率和血细胞比容。充分发展的稳定流的无量纲模拟显示,阻力和升力是重要的相互作用力。三维非稳态两相模拟预测了突然膨胀通道拐角处的RBC损耗。发现RBC耗尽长度随着流速和血细胞比容的降低而增加。该目标的主要结果表明,两相流模拟结果与实验数据在质量上有很好的一致性。因此,多相流和优化研究的努力已导致在医疗设备的早期阶段确定关键的设计因素,并减少了开发时间和成本。本文的主要工作是建立最先进的优化技术,建立可靠的血液创伤模型,并实现三维两相血流代码。差价合约优化;血液创伤疟疾;磁选;顺磁性粒子连续性相互作用理论两相流等离子体;红细胞;粘度阻力提升力。

著录项

  • 作者

    Kim, Jeongho.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号