首页> 外文学位 >Drag reduction by self-similar bending and a transition to forward flight by a symmetry-breaking instability.
【24h】

Drag reduction by self-similar bending and a transition to forward flight by a symmetry-breaking instability.

机译:通过自相似弯曲减少阻力,并通过破坏对称的不稳定性过渡到前向飞行。

获取原文
获取原文并翻译 | 示例

摘要

The behavior of fluids and macroscopic solids in contact is fundamental to many phenomena in biology. In particular, the biomechanical structures of plants can be understood in terms of the fluid forces they must withstand to survive. Flexibility plays a dominant role, as the reconfiguration of a flexible body results in substantial reduction of fluid drag. The first part of this thesis considers this phenomenon in terms of two-dimensional free-streamline flows past a one-dimensional elastic body. We solve the coupled fluid-elastic equations numerically. At large flow speeds, a shape self-similarity emerges, with a scaling set by the balance of forces in a small "tip" region located at the body's support. The result is a transition from the quadratic scaling of drag with flow speed for rigid bodies to a new 4/3-power scaling as the body reconfigures.; We derive these behaviors in terms of an asymptotic expansion based on the length-scale of similarity. This analysis predicts that the body and wake are quasiparabolic at large velocities, and obtains the new drag law in terms of the drag on the tip region. We also consider variations of the model suggested by experiments, and find that the 4/3-drag-law persists with a simple modification.; The second part of this thesis considers dynamical fluid-body coupling. Many organisms locomote by flapping a wing or fin transverse to the body's direction of motion. A recent experiment has shown that a horizontal motion can arise spontaneously from vertical flapping as a symmetry-breaking bifurcation. Here we solve the Navier-Stokes equations for the flow induced by a flapping ellipse. We find a critical flapping Reynolds number above which the ellipse is unstable to horizontal motions. Just above the critical Reynolds number, the instability yields a quasi-periodic, back-and-forth oscillation with zero mean horizontal velocity. For larger Reynolds number, the body can enter a steady horizontal motion, characterized by a reverse von-Karman vortex street and a Strouhal number of 0.3. These phenomena are consistent with the experiment as well as efficient animal locomotion.
机译:流体和宏观固体的接触行为是生物学中许多现象的基础。特别地,植物的生物力学结构可以根据它们生存所必须承受的流体力来理解。柔性起主要作用,因为柔性主体的重新配置可显着减少流体阻力。本文的第一部分从二维自由流线通过一维弹性体的角度来考虑这种现象。我们用数值方法求解耦合的流体-弹性方程。在大流速下,会出现形状自相似性,并通过位于身体支撑处的小“尖端”区域中的力平衡来设置缩放比例。结果是,刚体重新配置时,刚度随阻力的平方缩放随流动速度向新的4/3功率缩放过渡。我们基于相似度的长度尺度,根据渐近展开来导出这些行为。该分析预测,主体和尾流在大速度下是准抛物线,并根据尖端区域的阻力获得新的阻力定律。我们还考虑了实验建议的模型的变化,发现通过简单的修改,4/3拖曳定律仍然存在。本文的第二部分考虑了动态流固耦合。许多生物通过拍打横贯身体运动方向的机翼或鳍来活动。最近的一项实验表明,作为对称性破坏的分叉,垂直摆动会自发产生水平运动。在这里,我们求解由拍打椭圆引起的流动的Navier-Stokes方程。我们发现一个临界拍动雷诺数,在该拍动之上,椭圆对于水平运动是不稳定的。刚好在临界雷诺数之上,这种不稳定性会产生准周期来回振荡,平均水平速度为零。对于较大的雷诺数,身体可以进入稳定的水平运动,其特征是冯-卡尔曼涡街反向,斯特劳哈尔数为0.3。这些现象与实验以及有效的动物运动是一致的。

著录项

  • 作者

    Alben, Silas D.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.; Physics Fluid and Plasma.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;等离子体物理学;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号