首页> 外文学位 >Gating mechanism of potassium channels studied by electron paramagnetic resonance spectroscopy.
【24h】

Gating mechanism of potassium channels studied by electron paramagnetic resonance spectroscopy.

机译:电子顺磁共振波谱研究钾通道的门控机理。

获取原文
获取原文并翻译 | 示例

摘要

Ion channels are gated by transducing a variety of physical stimuli into structural rearrangements. The presence of significant conformational changes in intracellular regions of voltage-dependent potassium channels has been supported by extensive functional evidence. To better understand the gating conformational changes of the tetrameric channels, we constructed tandem dimers and tandem tetramers to measure inter- and intra-subunit distances of Streptomyces K+ channel KcsA. Both function and structure of the tandem constructs with protease-cut linkers were examined and they are conserved to those of the wild type channel. Based on the inter-subunit distance constraints of tandems, we deduced the open structure of inner helical bundle at backbone resolution by ReDCaT computation (Restraint-Driven Cartesian Transformations). The movement of TM2 creates a larger vestibule for ion permeating with the increase in diameters by minimum 2A at the pivot point and as much as 10A in the C-terminus. Moreover, dramatically increased distances between cytoplasmic helices indicate the release of the bundle upon opening. We also found that the possible helical hinges at positions Gly99 and Gly104 are critical for channel opening. Most intra-subunit distance changes between TM1 and TM2 upon channel opening are within 4A, suggesting the concerted movements of these two transmembrane helices. The inconsistency between the intra-subunit distances in the open state obtained by Electron Paramagnetic Resonance (EPR) and ones calculated by MMCM-MD computation (Metropolis Monte Carlo Minimization and Molecular Dynamics) based on the crystal structure of MthK (potassium channel from Methanobacterium thermoautotrophicum ) suggests MthK-based open structure is not the open model for KcsA. Techniques developed here provide not only the structural information of open KcsA but also the general methods to study the dynamic structures of symmetric oligomeric proteins.
机译:通过将各种物理刺激转换为结构重排来控制离子通道。广泛的功能证据支持在电压依赖性钾通道的细胞内区域中存在显着的构象变化。为了更好地理解四聚体通道的门控构象变化,我们构建了串联二聚体和串联四聚体以测量链霉菌K +通道KcsA的亚基间和亚基内距离。检查了具有蛋白酶切割的接头的串联构建体的功能和结构,并且它们与野生型通道的保守。基于双环的亚基间距离约束,我们通过ReDCaT计算(约束驱动的笛卡尔变换)推导了骨架分辨率下内部螺旋束的开放结构。 TM2的移动产生了一个更大的前庭,随着直径的增加,离子的渗透在枢轴点最小增加2A,在C端增加多达10A。而且,胞质螺旋之间的距离显着增加表明在打开时束释放。我们还发现,在Gly99和Gly104位置可能存在的螺旋形铰链对于通道打开至关重要。通道打开后,TM1和TM2之间的大多数亚单位内距离变化在4A之内,表明这两个跨膜螺旋的协调运动。电子顺磁共振(EPR)获得的打开状态下的亚单位内距离与基于MthK(来自嗜热自养甲烷细菌的钾通道)的晶体结构的MMCM-MD计算(Metropolis蒙特卡罗最小化和分子动力学)计算得出的不一致。 )表明基于MthK的开放结构不是KcsA的开放模型。此处开发的技术不仅提供开放KcsA的结构信息,而且提供研究对称寡聚蛋白动态结构的一般方法。

著录项

  • 作者

    Liu, Yi-Shiuan.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号