首页> 外文学位 >Robust Tracking Control and Signal Estimation for Networked Control Systems.
【24h】

Robust Tracking Control and Signal Estimation for Networked Control Systems.

机译:网络控制系统的鲁棒跟踪控制和信号估计。

获取原文
获取原文并翻译 | 示例

摘要

Networked control systems (NCSs) are known as distributed control systems (DCSs) which are based on traditional feedback control systems but closed via a real-time communication channel. In an NCS, the control and feedback signals are exchanged among the system's components in the form of information packages through the communication channel. The research of NCSs is important from the application perspective due to the significant advantages over the traditional point-to-point control. However, the insertion of the communication links would also bring challenges and constraints such as the network-induced delays, the missing packets, and the inter symbol interference (ISI) into the system design. In order to tackle these issues and move a step further toward industry applications, two important design problems are investigated in the control areas: Tracking Control (Chapter 2–Chapter 5) and Signal Estimation (Chapter 6–Chapter 8).;With the fact that more than 90% of control loops in industry are controlled by proportional-integral-derivative (PID) controllers, the first work in this thesis aims to propose the design algorithm on PID controllers for NCSs. Such a design will not require the change or update of the existing industrial hardware, and it will enjoy the advantages of the NCSs. The second motivation is that, due to the network-induced constraints, there is no any existing work on tuning the PID gains for a general NCS with a state-space model. In Chapter 2, the PID tracking control for multi-variable NCSs subject to time-varying delays and packet dropouts is exploited. The H ∞ control is employed to attenuate the load disturbance and the measurement noise.;In Chapter 3, the probabilistic delay model is used to design the delay-scheduling tracking controllers for NCSs. The tracking control strategy consists of two parts: (1) the feedforward control can enhance the transient response, and (2) the feedback control is the digital PID control. In order to compensate for the delays on both communication links, the predictive control scheme is adopted.;To make full use of the delay information, it is better to use the Markov chain to model the network-induced delays and the missing packets. A common assumption on the Markov chain model in the literature is that the probability transition matrix is precisely known. However, the assumption may not hold any more when the delay is time-varying in a large set and the statistics information on the delays is inadequate. In Chapter 4, it is assumed that the transition matrices are with partially unknown elements. An observer-based robust energy-to-peak tracking controller is designed for the NCSs.;In Chapter 5, the step tracking control problem for the nonlinear NCSs is investigated. The nonlinear plant is represented by Takagi-Sugeno (T-S) fuzzy linear model. The control strategy is a modified PI control. With an augmentation technique, the tracking controller design problem is converted into an H ∞ optimization problem. The controller parameters can be obtained by solving non-iterative linear matrix inequality conditions.;The state estimation problem for networked systems is explored in Chapter 6. At the sensor node, the phenomenon of multiple intermittent measurements is considered for a harsh sensing environment. It is assumed that the network-induced delay is time-varying within a bounded interval. To deal with the delayed external input and the non-delayed external input, a weighted H ∞ performance is defined. A Lyapunov-based method is employed to deal with the estimator design problem. When the delay is not large, the system with delayed state can be transformed into delay-free systems. By using the probabilistic delay model and the augmentation, the H ∞ filter design algorithm is proposed for networked systems in Chapter 7. Considering the phenomenon of ISI, the signals transmitted over the communication link would distort, that is, the output of the communication link is not the same with the input to the communication link. If the phenomenon occurs in the NCSs, it is desired to reconstruct the signal. In Chapter 8, a robust equalizer design algorithm is proposed to reconstruct the input signal, being robust against the measurement noise and the parameter variations.;Finally, the conclusions of the dissertation are summarized and future research topics are presented.
机译:网络控制系统(NCS)被称为分布式控制系统(DCS),该系统基于传统的反馈控制系统,但通过实时通信通道关闭。在NCS中,控制和反馈信号通过通信通道以信息包的形式在系统组件之间交换。从应用的角度来看,NCS的研究非常重要,因为它具有优于传统点对点控制的优势。但是,通信链路的插入也会给系统设计带来挑战和约束,例如网络引起的延迟,丢失的数据包和符号间干扰(ISI)。为了解决这些问题并进一步迈向工业应用,我们在控制领域研究了两个重要的设计问题:跟踪控制(第2章至第5章)和信号估计(第6章至第8章)。由于工业上超过90%的控制回路是由比例积分微分(PID)控制器控制的,因此本文的第一项工作旨在提出用于NCS的PID控制器的设计算法。这样的设计将不需要更改或更新现有的工业硬件,它将享受NCS的优势。第二个动机是,由于网络引起的约束,对于使用状态空间模型调整通用NCS的PID增益,目前尚无任何工作。在第二章中,利用了多变量NCS的PID跟踪控制,该控制受时变延迟和丢包的影响。采用H∞控制来衰减负载扰动和测量噪声。第三章,概率延迟模型被用来设计NCSs的延迟调度跟踪控制器。跟踪控制策略由两部分组成:(1)前馈控制可以增强瞬态响应,(2)反馈控制是数字PID控制。为了补偿两条通信链路上的延迟,采用了预测控制方案。为了充分利用延迟信息,最好使用马尔可夫链对网络引起的延迟和丢失的数据包进行建模。文献中对马尔可夫链模型的一个普遍假设是概率转移矩阵是精确已知的。但是,当延迟在大集合中随时间变化并且关于延迟的统计信息不足时,该假设可能不再成立。在第4章中,假定转移矩阵具有部分未知的元素。针对NCS设计了一种基于观测器的鲁棒能量至峰跟踪控制器。在第五章中,研究了非线性NCS的步进跟踪控制问题。非线性植物由Takagi-Sugeno(T-S)模糊线性模型表示。控制策略是改进的PI控件。利用增强技术,将跟踪控制器设计问题转换为H∞优化问题。可以通过求解非迭代线性矩阵不等式条件来获得控制器参数。第六章探讨了网络系统的状态估计问题。在传感器节点,考虑到恶劣的传感环境,需要考虑多次间歇测量的现象。假定网络引起的延迟在有界间隔内是时变的。为了处理延迟的外部输入和非延迟的外部输入,定义了加权H∞性能。采用基于Lyapunov的方法来处理估计器设计问题。当延迟不大时,可以将具有延迟状态的系统转换为无延迟系统。通过使用概率延迟模型和扩充,在第7章中针对网络系统提出了H∞滤波器设计算法。考虑到ISI现象,通过通信链路传输的信号会失真,即通信链路的输出。与通信链接的输入不同。如果现象发生在NCS中,则需要重建信号。在第8章中,提出了一种鲁棒的均衡器设计算法来重构输入信号,该算法对测量噪声和参数变化具有鲁棒性。最后,总结了论文的结论,并提出了未来的研究课题。

著录项

  • 作者

    Zhang, Hui.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号