首页> 外文学位 >Chemical Potential Perturbation: A Method to Predict Chemical Potential Using Molecular Simulations.
【24h】

Chemical Potential Perturbation: A Method to Predict Chemical Potential Using Molecular Simulations.

机译:化学势扰动:一种使用分子模拟预测化学势的方法。

获取原文
获取原文并翻译 | 示例

摘要

A new method, called chemical potential perturbation (CPP), has been developed to predict the chemical potential as a function of composition in molecular simulations. The CPP method applies a spatially varying external potential to the simulation, causing the composition to depend upon position in the simulation cell. Following equilibration, the homogeneous chemical potential as a function of composition can be determined relative to some reference state after correcting for the effects of the inhomogeneity of the system. The CPP method allows one to predict chemical potential for a wide range of composition points using a single simulation and works for dense fluids where other prediction methods become inefficient.;For pure-component systems, three different methods of approximating the inhomogeneous correction are compared. The first method uses the van der Waals density gradient theory, the second method uses the local pressure tensor, and the third method uses the Triezenberg-Zwanzig definition of surface tension. If desired, the binodal and spinodal densities of a two-phase fluid region can also be predicted by the new method. The CPP method is tested for pure-component systems using a Lennard-Jones (LJ) fluid at supercritical and subcritical conditions.;The CPP method is also compared to Widom's method. In particular, the new method works well for dense fluids where Widom's method starts to fail. The CPP method is also extended to an Ewald lattice sum treatment of intermolecular potentials. When computing the inhomogeneous correction term, one can use the Irving-Kirkwood (IK) or Harasima (H) contours of distributing the pressure. We show that the chemical potential can be approximated with the CPP method using either contour, though with the lattice sum method the H contour has much greater computational efficiency. Results are shown for the LJ fluid and extended simple point-charge (SPC/E) water. We also show preliminary results for solid systems and for a new LJ lattice sum method, which is more efficient than a full lattice sum when the average density varies only in one direction.;The CPP method is also extended to activity coefficient prediction of multi-component fluids. For multi-component systems, a separate external potential is applied to each species, and constant normal component pressure is maintained by adjusting the external field of one of the species. Preliminary results are presented for five different binary LJ mixtures. Results from the CPP method show the correct trend but some CPP results show a systematic bias, and we discuss a few possible ways to improve the method.
机译:已经开发了一种称为化学势扰动(CPP)的新方法来预测分子模拟中化学势随成分的变化。 CPP方法将空间变化的外部电势应用于模拟,从而导致合成取决于模拟单元中的位置。平衡后,在校正系统不均匀性的影响后,可以相对于某些参考状态确定作为组成函数的均相化学势。 CPP方法允许使用一次模拟就可以预测大范围组成点的化学势,并适用于其他预测方法效率不高的稠密流体。对于纯组分系统,比较了三种近似不均匀校正的方法。第一种方法使用Van der Waals密度梯度理论,第二种方法使用局部压力张量,第三种方法使用表面张力的Triezenberg-Zwanzig定义。如果需要,也可以通过新方法预测两相流体区域的双脚和双脚轴密度。使用Lennard-Jones(LJ)流体在超临界和亚临界条件下对纯组分系统的CPP方法进行了测试;还将CPP方法与Widom方法进行了比较。特别是,新方法在Widom方法开始失败的稠密流体中效果很好。 CPP方法还扩展到分子间电势的Ewald晶格和处理。在计算非均匀校正项时,可以使用Irving-Kirkwood(IK)或Harasima(H)等高线分布压力。我们表明,使用CPP方法可以使用任一轮廓来近似化学势,尽管使用格和法H轮廓具有更高的计算效率。显示了LJ流体和扩展的简单点电荷(SPC / E)水的结果。我们还展示了固体系统和新的LJ晶格和方法的初步结果,当平均密度仅在一个方向上变化时,该方法比全晶格和更有效。CPP方法还扩展到多活度系数的预测组分流体。对于多组分系统,将单独的外部电势施加到每个物质,并通过调整其中一个物质的外部电场来维持恒定的法向组分压力。给出了五种不同的二元LJ混合物的初步结果。 CPP方法的结果显示出正确的趋势,但是一些CPP结果显示出系统的偏差,我们讨论了几种改进方法的方法。

著录项

  • 作者

    Moore, Stan G.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Engineering General.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号