首页> 外文学位 >Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles.
【24h】

Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles.

机译:填充了接枝纳米颗粒的环氧树脂和有机硅光学纳米复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application.;For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites.;To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities, the grafted PGMA brushes effectively screen the van der Waals attraction between the particles, and homogenous nanoparticle dispersions of grafted nanoparticles were obtained. Transparent high refractive index TiO2/epoxy thin film and bulk nancomposites were obtained by dispersing PGMA brushes-grafted TiO2 nanoparticles into a commercial epoxy matrix. The refractive index of the nanocomposites showed a linear dependence on the volume fraction of TiO2 nanoparticles and the optical transparency could be generally described by the Rayleigh scattering model. This powerful dispersing technique was further employed to make visibly transparent, UV/IR blocking ITO/epoxy nanocomposites which can be easily applied onto glass and plastic substrates as energy saving optical coating materials.;To produce transparent silicone nanocomposites, we directly coupled phosphate-terminated PDMS chains onto the optical nanoparticle surface. It was observed that the mono-modal PDMS-grafted particles usually formed agglomerates within silicone matrices, whereas the bimodal PDMS-grafted particles were able to be individually dispersed even within high molecular weight matrices. Transparent high refractive index bulk TiO2/silicone nanocomposites were successfully prepared by filling with bimodal PDMS-grafted TiO2 nanoparticles. Furthermore, we used the PDMS-grafted TiO2/silicone nanocomposite as a model system to create a methodology to predict and control the dispersion behavior of grafted nanoparticles. The good agreement between experimental observation of dispersion of mono-modal and bimodal grafted particles and theoretical prediction would better guide future experiments and lead to predictability in polymer composite design. Finally, the bimodal grafted chain design was implemented in the preparation of transparent and luminescent CdSe/silicone nanocomposites with potential application as non-scattering light conversion materials for LEDs. The homogeneous dispersion of bimodal PDMS-grafted CdSe quantum dots not only minimizes the transparency loss due to scattering, but also benefits the uniformity and long-term stability of photoluminescence of the nanocomposites.
机译:聚合物纳米复合材料作为技术上重要的一类材料,具有多种功能特性,可用于从结构和生物医学到电子和光学的各种应用。聚合物纳米复合材料的性能部分取决于聚合物基质和纳米填料的化学组成。它们的性质还对纳米填料的几何形状和尺寸以及填料的空间分布敏感。控制纳米颗粒的大小和在给定聚合物中的分散度提供了机会,可以针对特定应用调整和优化纳米复合材料的性能;对于光学应用,例如封装发光二极管(LED),填充有均匀分散的纳米颗粒的聚合物纳米复合材料将赋予纳米材料以优异的性能。具有新功能的聚合物密封剂,而不会牺牲光学透明度。为此,本论文着重于开发一种简单且通用的方法,以基质相容的链接枝纳米颗粒为填充剂来制备环氧和有机硅透明纳米复合材料,并研究该纳米复合材料的光学性质。已证明表面化学和接枝聚合物链设计在决定接枝纳米颗粒的分散状态以及最终决定纳米复合材料的最终光学性能方面起着重要作用。为了制备透明环氧纳米复合材料,聚甲基丙烯酸缩水甘油酯(PGMA)通过结合的磷酸盐配体交换过程和叠氮化物-炔烃“喀哒”化学将碳链连接到光学纳米颗粒表面。通过系统地改变接枝密度和接枝链长,研究了PGMA接枝纳米颗粒在环氧基质中的分散行为。发现在小分子量环氧树脂中,分散状态对接枝密度比对接枝链的分子量更敏感。具有高接枝密度,接枝的PGMA刷有效地筛选了颗粒之间的范德华力吸引,并获得了接枝纳米颗粒的均匀纳米颗粒分散体。通过将PGMA刷接枝的TiO2纳米颗粒分散到商业环氧基质中,可以获得透明的高折射率TiO2 /环氧薄膜和块状纳米复合材料。纳米复合材料的折射率显示出与TiO2纳米颗粒的体积分数的线性关系,并且光学透明性通常可以通过瑞利散射模型来描述。这项功能强大的分散技术被进一步用于制造透明,可阻挡UV / IR的ITO /环氧纳米复合材料,可轻松应用于玻璃和塑料基材上作为节能的光学涂料。 PDMS链接到光学纳米颗粒表面。观察到,单峰PDMS接枝的颗粒通常在聚硅氧烷基质内形成附聚物,而双峰PDMS接枝的颗粒即使在高分子量基质内也能够单独分散。通过填充双峰PDMS接枝的TiO2纳米粒子,成功制备了透明的高折射率块状TiO2 /有机硅纳米复合材料。此外,我们使用PDMS接枝的TiO2 /有机硅纳米复合材料作为模型系统,以创建一种预测和控制接枝纳米粒子分散行为的方法。单峰和双峰接枝颗粒分散性的实验观察与理论预测之间的良好一致性将更好地指导未来的实验并导致聚合物复合材料设计的可预测性。最后,在制备透明和发光的CdSe /有机硅纳米复合材料中实施了双峰接枝链设计,具有潜在的应用前景,可作为LED的非散射光转换材料。双峰PDMS接枝的CdSe量子点的均匀分散不仅使由于散射引起的透明性损失最小,而且有利于纳米复合材料的光致发光的均匀性和长期稳定性。

著录项

  • 作者

    Tao, Peng.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号