首页> 外文学位 >Vesicular stomatitis virus vectored chimeric hemagglutinin constructs as broadly cross-reactive influenza vaccines.
【24h】

Vesicular stomatitis virus vectored chimeric hemagglutinin constructs as broadly cross-reactive influenza vaccines.

机译:水泡性口炎病毒载体嵌合的血凝素构建体可作为广泛交叉反应的流感疫苗。

获取原文
获取原文并翻译 | 示例

摘要

Seasonal influenza virus infections cause significant disease each year, and there is a constant threat of the emergence of reassortant influenza strains that are capable of causing a new pandemic. Available influenza vaccines are variably effective each season, are of limited scope at protecting against viruses that have undergone significant antigenic drift, and offer little in the way of protection against newly emergent pandemic trains. "Universal" influenza vaccine strategies that focus on the development of humoral immunity directed against the stalk domains of the viral hemagglutinin (HA) show promise for protecting against diverse influenza viruses. The following chapters describe such a strategy that utilizes vesicular stomatitis virus (VSV) as a vector for chimeric hemagglutinin (cHA) antigens. This vaccination strategy is effective at generating HA stalk-specific, broadly cross-reactive serum antibodies by both the intramuscular and intranasal routes of vaccination. The data presented show that prime-boost vaccination strategies provide protection against both lethal homologous and heterosubtypic influenza challenge, and that protection is significantly improved with intranasal vaccine administration. Additionally, the data indicate that vaccination with VSV-cHAs generates greater stalk-specific and cross-reactive serum antibodies than does vaccination with VSV vectored full-length HAs, confirming that the cHA-based vaccination strategies are superior at generating stalk-specific humoral immunity. Curiously, however, mice that were vaccinated with either VSV-cHAs or corresponding VSV-HAs, experienced similar protection against disease from a heterologous influenza challenge virus, despite the difference in serum antibody titers. This may indicate that other mechanisms are contributing to the protection conferred by vaccination.;In order to elucidate some of the immune mechanisms underlying the effectiveness of these VSV-cHA vaccines, we conducted experiments to deplete mice of CD4+ and/or CD8+ T-cells at different points in the vaccination regimen. We show that, in addition to potent HA-specific serum antibody production, there is also a significant contribution of both CD4+ and CD8+ T-cells to the protection afforded by VSV-cHA vaccines. We also show that the increase in serum antibody titer in response to boosting vaccination is highly dependent on CD4+ T-cells. These findings suggest that universal influenza vaccination strategies that utilize cHAs as immunogens establish protection against influenza disease through both humoral and cellular immune mechanisms.;The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. In order to directly address vaccination against influenza strains with the potential for causing pandemic disease, we describe an additional vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVDeltaG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVDeltaG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVDeltaG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus, and could be incorporated into vaccination strategies that produce broadly cross-protective responses.;VSV-vectored influenza vaccines offer a novel means for protecting against widely diverged influenza viruses while limiting exposure to a single viral vector. The results described in the following chapters offer promising insights into the mechanisms by which protection against influenza is achieved, and contribute to the further development of universal influenza vaccines.
机译:季节性流感病毒感染每年都会导致重大疾病,并且不断出现重新构成流感病毒株的威胁,这些病毒株可能引起新的大流行病。可用的流感疫苗在每个季节的效果各不相同,在保护范围内免受已发生重大抗原漂移的病毒的保护作用有限,并且对新近出现的大流行病毒的保护作用很小。侧重于针对病毒血凝素(HA)茎域的体液免疫发展的“通用”流感疫苗策略显示了预防多种流感病毒的希望。以下各章介绍了利用水泡性口炎病毒(VSV)作为嵌合血凝素(cHA)抗原载体的这种策略。该疫苗接种策略可有效地通过肌内和鼻内疫苗接种途径产生HA茎特异性,广泛交叉反应的血清抗体。所提供的数据表明,初免-加强型疫苗接种策略可提供针对致命的同源和异亚型流感病毒攻击的保护作用,并且通过鼻内接种疫苗可大大提高保护作用。此外,数据表明,VSV-cHAs疫苗接种比VSV载体全长HAs疫苗接种产生更大的茎特异性和交叉反应性血清抗体,证实基于cHA的疫苗接种策略在产生茎特异性的体液免疫方面更胜一筹。然而,奇怪的是,尽管血清抗体滴度有所不同,但接种了VSV-cHAs或相应的VSV-HAs的小鼠也受到了类似的针对异源流感病毒攻击的保护。这可能表明其他机制正在促进疫苗接种所赋予的保护作用。为了阐明这些VSV-cHA疫苗效力的一些免疫机制,我们进行了实验,耗竭CD4 +和/或CD8 + T细胞的小鼠在疫苗接种方案的不同阶段。我们显示,除了有效的HA特异性血清抗体生产外,CD4 +和CD8 + T细胞对VSV-cHA疫苗提供的保护也有重大贡献。我们还显示,响应加强疫苗接种,血清抗体滴度的增加高度依赖于CD4 + T细胞。这些发现表明,利用cHAs作为免疫原的通用流感疫苗接种策略可通过体液和细胞免疫机制建立针对流感疾病的保护作用;导致毁灭性人类疾病的新型流感病毒的出现是持续的威胁,并为持续不断的发展提供了动力。开发新型流感疫苗方法。为了直接解决针对可能导致大流行性疾病的流感病毒株的疫苗接种,我们描述了一种利用缺乏天然G表面糖蛋白基因(VSVDeltaG)的复制缺陷性水疱性口炎病毒(VSV)载体骨架的其他候选疫苗。 H5N1高致病性禽流感病毒(HPAIV),A /越南/ 1203/04(VN1203)的H5 HA和H1N1流感病毒A / Puerto Rico / 8/34(PR8)的NA的表达VSVDeltaG载体恢复了重组病毒在细胞培养物中复制的能力,而无需添加胰蛋白酶。我们表明,当通过肌肉内或鼻内免疫途径给予疫苗时,这种重组病毒疫苗候选物在小鼠中是非致病性的,并且VSVDeltaG-H5N1的体内复制被大大减弱。单次使用后,这种重组病毒还可提供针对致命H5N1感染的保护作用。这种针对HPAIV的新型疫苗接种方法可能广泛适用于其他新兴的流感病毒株,并且可以纳入产生广泛交叉保护反应的疫苗接种策略。; VSV载体接种的流感疫苗提供了一种新型的手段,可以预防广泛的流感病毒,同时限制暴露于单个病毒载体。以下各章中描述的结果为实现预防流感的机制提供了有希望的见识,并为通用流感疫苗的进一步发展做出了贡献。

著录项

  • 作者

    Ryder, Alex B.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology.;Virology.;Immunology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号