首页> 外文学位 >High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice.
【24h】

High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice.

机译:高精度光学光谱学和量子态选择的超冷88Sr2分子在光晶格中的光解离。

获取原文
获取原文并翻译 | 示例

摘要

Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment.;This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics. Finally, we discuss the measurement of photofragment angular distributions produced by photodissociation, leading to an exploration of quantum-state-resolved ultracold chemistry.
机译:在过去的几十年中,在精确表征和控制原子方面已取得了迅速进展,这在很大程度上是由于开发了窄线宽激光器以及用于在超冷温度下捕集和冷却的技术而实现的。将这一进展扩展到分子将对化学,凝聚态物理以及标准模型以外的物理精密测试产生令人兴奋的影响。这些可能性都是分子结构丰富的结果,而分子结构的丰富性是由与原子结构特征完全不同的物理学决定的。然而,这种相同的结构丰富性使任何分子实验的复杂性都比其原子对应物高出许多倍,从而扩大了从捕获和冷却到理论与实验的比较等所有方面的难度。在超冷分子的操纵和量子控制方面建立了最先进的技术。我们的分子是通过超冷锶原子的光缔合,然后自发衰变成稳定的基态而产生的。我们描述了一套完整的测量方法,从几个不同的角度描述了非常弱地结合(因此非常大)的88Sr2分子的振动结构,包括结合能的测定。线性,二次和高阶塞曼位移;束缚态之间的过渡强度;和窄亚辐射状态的寿命。这些实验中获得的物理直觉通常适用于弱结合双原子分子,并建议在精密测量和计量学中有广泛的应用。此外,我们对非魔术光学晶格陷阱中分子的热拓谱线形进行了详细分析,显示了如何使用这种线形直接确定原位原子或分子的温度,从而解决了一个长期存在的问题在超冷物理学中。最后,我们讨论了由光解离产生的光碎裂角分布的测量,从而导致了对量子态分辨超冷化学的探索。

著录项

  • 作者

    McDonald, Mickey Patrick.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号