首页> 外文学位 >Materials Integration and Doping of Carbon Nanotube-based Logic Circuits.
【24h】

Materials Integration and Doping of Carbon Nanotube-based Logic Circuits.

机译:碳纳米管逻辑电路的材料集成和掺杂。

获取原文
获取原文并翻译 | 示例

摘要

Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations.;Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits.;Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.
机译:在过去的20年中,对单壁碳纳米管(SWCNT)的结构和性能的广泛研究阐明了SWCNT所具有的许多非凡品质,包括创纪录的拉伸强度,出色的化学稳定性,独特的光电特性以及出色的性能。电子运输特性。为了利用这些非凡的品质,必须先克服许多特定于应用程序的障碍,然后才能在商业产品中使用该材料。对于电子应用,按电子类型对SWCNT分类的最新进展已使基于SWCNT的集成电路取得了重大进展。尽管取得了这些进步,但具有适用于大规模集成电路的适当特性的基于SWCNT的器件的演示仍受到限制。本文所开发的处理方法,材料集成以及对电子特性的机械理解使史无前例的基于SWCNT的晶体管制造和集成电路演示成为可能。创新的材料选择和处理方法是这项工作的核心,这些进展已经导致晶体管具有现代电路集成所需的必要传输特性。首先,与其他研究小组的广泛合作允许使用多种材料和加工方法(例如新型介电材料,混合半导体材料系统以及基于溶液的SWCNT TFT印刷)来探索SWCNT薄膜晶体管(TFT)。这些材料被集成到电路演示中,例如使用刚性和柔性衬底的NOR和NAND逻辑门,压控环形振荡器和D触发器。本文探讨了实现互补的基于SWCNT的电路的策略,这些电路是通过使用局部金属栅极结构开发的,该结构可实现具有宽范围分离和对称阈值电压的增强型p型和n型SWCNT TFT。此外,还利用溶液处理的有机金属小分子开发了一种用于SWCNT TFT的新型n型掺杂工艺,以展示第一个网络面浇口的n型SWCNT TFT。最后,结合了新的掺杂和封装层以稳定p型和n型SWCNT TFT电子性能,从而可以制造大规模存储电路。采用这些材料和工艺方面的进步解决了许多商业化的特定应用障碍。例如,第一个薄膜SWCNT互补金属氧化物半导体(CMOS)逻辑器件被证明具有亚纳瓦级静态功耗和全轨到轨电压传输特性。随着新的n型Rh基分子掺杂剂的引入,第一批SWCNT TFT以顶栅几何形状在大面积上以高成品率制造。然后,通过使用可靠的封装方法,已经实现了p型和n型SWCNT TFT的稳定且均匀的电子性能。基于这些互补的SWCNT TFT,可以模拟,设计和制造低功耗静态随机存取存储器(SRAM)电路的阵列,从而首次基于溶液处理半导体实现大规模集成。总之,这项工作为解决方案可处理,大规模,高能效的高级集成逻辑电路和系统提供了直接途径。

著录项

  • 作者

    Geier, Michael.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号