首页> 外文学位 >Theoretical design and material growth of Type-II Antimonide-based superlattices for multi-spectral infrared detection and imaging.
【24h】

Theoretical design and material growth of Type-II Antimonide-based superlattices for multi-spectral infrared detection and imaging.

机译:用于多光谱红外检测和成像的基于II型锑化物的超晶格的理论设计和材料生长。

获取原文
获取原文并翻译 | 示例

摘要

Infrared detectors find applications in many aspects of life, from night vision, target tracking for homeland security and defense, non-destructive failure detection in industry, chemical sensing in medicine, and free-space communication. Currently, the dominant technologies of photodetectors based upon HgCdTe and InSb are experiencing many limitations. Under this circumstance, the Type-II InAs/GaSb/AlSb superlattices which have been intensively studied recently appear to be an excellent candidate to give breakthroughs in the infrared technology. The Type-II SLs with theirs advantages such as great flexibility in bandgap engineering, high carrier effective mass, Auger recombination suppression and high uniformity have shown excellent device performance from MWIR to VLWIR. In the era of the third generation for infrared cameras, Type-II SLs are entering the new phase of development with high performance and multi-spectral detection.;The goal of this work is to investigate quantum properties of the superlattice system, design appropriate device architectures and experimentally fabricate infrared detectors which can push further the limit of this material system and outperform existing competing technologies. The binary-binary InAs/GaSb superlattice has gone through much transformation over the years. Incorporating compounds lattice matched to the 6.1A family has invited more possibilities to band engineer the Type-II SLs. For the first time, by employing all three members of this material system, we have designed a new superlattice structure and demonstrated shortwavelength infrared (SWIR) photodiodes based on Type-II InAs/GaSb/AlSb with high electrical and optical performance. The photodiodes exhibited a quantum efficiency of 60% with very low dark current, can be operated at room temperature. In addition to the range of MWIR to VLWIR, a new channel of detection has been added to the GaSb based type-II SL material system.;The new realization of SWIR photodiodes has led to the possibility of incorporating this channel to the multi-spectral detection. By combining with the MWIR channel, dual-band SWIR-MWIR photodiodes and focal plane arrays have been demonstrated, giving the capability of delivering both active and passive imaging in one single camera. Dual-band SWIR-MWIR photodiodes with quantum efficiency more than 50% for each channel has been achieved. Just like visible imaging, besides the available dual-band detection, the prospect of incorporating the third infrared waveband detection is very promising for a wide range of applications. However, the challenges for making such devices are so many that little success has been achieved. In the work, we also propose a new approach in device design to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetector based on InAs/GaSb/AlSb type-II superlattice. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. For the first time, we demonstrate experimentally Type-II superlattice based three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. While retaining the simplicity in device fabrication, this demonstration opens the new prospect for three-color infrared imaging.;Finally, for further improvement, we are looking toward new type-II material called InAs/InAsSb superlattices. Theoretical design and growth techniques have been developed to investigate the properties of this material. We successfully demonstrated the design and growth of MWIR to VLWIR photodiodes based on Type-II InAs/InAsSb with high performance. Given the fact that these two Type-II material systems share the same GaSb substrate, a new incorporation could further fully exploit their advantages in the near future.;Theoretical design, growth and optimization of device performance in each work are discussed.
机译:红外探测器可用于生活的许多方面,包括夜视,用于国土安全和国防的目标跟踪,工业中的无损故障检测,医学中的化学传感以及自由空间通信。当前,基于HgCdTe和InSb的光电探测器的主导技术正在经历许多局限。在这种情况下,最近进行了深入研究的II型InAs / GaSb / AlSb超晶格似乎是在红外技术上取得突破的极佳候选者。 II型SL凭借其在带隙工程中的灵活性,高载流子有效质量,俄歇复合抑制和高均匀性等优点,显示了从MWIR到VLWIR的出色器件性能。在第三代红外摄像机时代,Type-II SL进入了高性能和多光谱检测的新发展阶段。这项工作的目的是研究超晶格系统的量子特性,设计合适的器件构架和实验性制造的红外探测器,可以进一步推动这种材料系统的极限,并超越现有竞争技术。多年来,二元二进制InAs / GaSb超晶格经历了许多转变。结合与6.1A系列晶格匹配的化合物,为II型SL的带式工程带来了更多的可能性。通过使用该材料系统的所有三个成员,我们首次设计了一种新的超晶格结构,并展示了基于II型InAs / GaSb / AlSb的短波红外(SWIR)光电二极管,具有高的电学和光学性能。光电二极管在非常低的暗电流下显示出60%的量子效率,可以在室温下工作。除了MWIR到VLWIR的范围外,还为基于GaSb的II型SL材料系统添加了新的检测通道。SWIR光电二极管的新实现导致将该通道纳入多光谱的可能性。检测。通过与MWIR通道相结合,已演示了双波段SWIR-MWIR光电二极管和焦平面阵列,从而能够在一台摄像机中同时提供主动和被动成像。已经实现了每个通道的量子效率超过50%的双波段SWIR-MWIR光电二极管。就像可见光成像一样,除了可用的双波段检测之外,结合第三红外波段检测的前景对于广泛的应用也是非常有前途的。然而,制造这样的设备的挑战如此之多,以致几乎没有成功。在工作中,我们还提出了一种新的器件设计方法,以实现基于InAs / GaSb / AlSb II型超晶格的偏置可选的三色短波-中波-长波红外光电探测器。利用导带偏移和两个吸收层之间不同的掺杂水平的影响来控制各个通道的导通电压。首次,我们在不使用其他端子触点的情况下,通过实验演示了基于II型超晶格的三色光电二极管。随着施加的偏置电压的变化,光电二极管依次呈现出三种不同颜色的行为,对应于三个吸收体的带隙。在每个通道中实现了明确定义的截止值和高量子效率。在保持器件制造简单性的同时,该演示为三色红外成像打开了新的前景。最后,为进一步改进,我们正在寻找名为InAs / InAsSb超晶格的新型II型材料。已经开发了理论设计和生长技术来研究这种材料的特性。我们成功地演示了基于高性能II型InAs / InAsSb的MWIR到VLWIR光电二极管的设计和发展。考虑到这两种Type-II材料系统共享相同的GaSb衬底,新的合并可以在不久的将来进一步充分利用它们的优势。讨论了每项工作的理论设计,器件性能的增长和优化。

著录项

  • 作者

    Hoang, Anh Minh.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Electrical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号