首页> 外文学位 >A-posteriori finite element output bounds for the electro-osmotic flow in microchannels.
【24h】

A-posteriori finite element output bounds for the electro-osmotic flow in microchannels.

机译:微通道中电渗流的后验有限元输出范围。

获取原文
获取原文并翻译 | 示例

摘要

Advanced computational techniques used to quantify the numerical accuracy are essential components for robust and reliable use of these simulations in engineering. Over the last two decades, a number of endeavors have focused on the challenge for development and improvement of error estimation techniques and adaptive discretization methods. A particular contribution in recent years has been dedicated to the development of an a-posteriori finite element error estimation technique termed the 'bound method '. This novel technique provides fast yet reliable, accurate, and efficient bounds to the quantity of interest, termed the 'output' here-in, expressed as a functional of the field solutions for the underlying partial differential equations (PDEs). Furthermore, the method naturally yields a local error indicator, which estimates the numerical error for given numerical models, leading to the construction of 'ideal' meshes for computations. The bound method in this work is applied to the multi-physical, multi-scale and multi-dimensional microfluidic phenomena, in particular, the electro-osmotic flow in microchannels. An appropriate mathematical representation of the electro-osmotic flow in microchannels can be expressed by multi-physical PDEs which span inter-disciplinary physical phenomena such as the fluid mechanics, heat/mass transfer, surface phenomena as well as electro-mechanics. The primarily goal of this thesis is the development of the novel computational tools applied to multi-disciplinary applications governed by the non-linear and non-coercive PDEs such as steady incompressible Navier-Stokes and Energy equations. The second goal of this thesis is the improvement of the bound method enhanced by advanced numerical strategies such as an adaptive refinement, the direct equilibration, and parallel computing. The final and ultimate goal of this thesis is the application of the advanced bound method in the context of the design and optimization for the microfluidics in a microchannel network to better analyze and predict microfluidic flow motion and species transport phenomena. Three numerical models, namely the non-slip velocity model, the slip velocity model, and the EO-velocity model, for simulating the electro-osmotic flow in microchannels are considered in this work. The bound method based on the above three numerical models for the electro-osmotic flow in microchannels will be constructed. The bound method will be applied for the electro-osmotic flow in various microchannels. Furthermore, its performance will be illustrated in terms of numerical accuracy and computational cost.
机译:用于量化数值精度的先进计算技术是在工程中可靠可靠地使用这些模拟的重要组成部分。在过去的二十年中,许多努力集中在开发和改进误差估计技术和自适应离散化方法的挑战上。近年来,特别致力于开发一种称为“绑定方法”的后验有限元误差估计技术。这项新颖的技术为感兴趣的数量(本文中称为“输出”)提供了快速而可靠,准确且有效的界限,表示为基础偏微分方程(PDE)的现场解的函数。此外,该方法自然会产生一个局部误差指示器,该指示器会估计给定数值模型的数值误差,从而导致“理想”网格的构建以进行计算。这项工作中的约束方法适用于多物理,多尺度和多维的微流体现象,特别是微通道中的电渗流。微通道中电渗流的适当数学表示可以通过跨学科的物理现象(例如流体力学,热/质量传递,表面现象以及机电)的多物理PDE来表示。本文的主要目标是开发适用于多学科应用的新型计算工具,这些工具受非线性和非强制PDE的支配,例如稳定的不可压缩Navier-Stokes和Energy方程。本文的第二个目标是通过先进的数值策略(如自适应细化,直接平衡和并行计算)来改进绑定方法。本文的最终目标是在微通道网络中设计和优化微流控系统中应用先进的边界方法,以更好地分析和预测微流控运动和物种迁移现象。本文研究了三种数值模型,分别是非滑移速度模型,滑移速度模型和EO速度模型,用于模拟微通道中的电渗流。将基于上述三个数值模型为微通道中的电渗流建立约束方法。绑定方法将应用于各种微通道中的电渗流。此外,将根据数值精度和计算成本来说明其性能。

著录项

  • 作者

    Choi, Hae-Won.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号