首页> 外文学位 >Cellular Strategies for Controlling the Glial Response to Ischemic Injury and Sensitivity Analysis of Stochastic Biochemical Reaction Networks.
【24h】

Cellular Strategies for Controlling the Glial Response to Ischemic Injury and Sensitivity Analysis of Stochastic Biochemical Reaction Networks.

机译:控制胶质细胞对缺血性损伤的反应和随机生化反应网络敏感性分析的细胞策略。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses two topics related to computational systems biology. Part I of the dissertation is motivated by the search for effective treatments for ischemic stroke. Ischemia refers to an inadequate blood supply that initiates a complex set of cellular signaling pathways that ultimately determine whether brain cells survive or die. Microglia — resident immune cells of the brain — play an influential role in determining cell fate following stroke. One pathway of particular importance involves activation of the transcription factor nuclear factor κB (NF-κB), which controls the expression of many inflammatory and cell death related genes. A deterministic model is developed to quantitatively describe the feedback-regulated NF-κB signaling pathway in microglia, prompted by the inability of previously published models to correctly capture the dynamics observed from experimental data sets from microglia cells. The new model incorporates previously unmodeled dynamics of inhibitor degradation and modified kinetics for upstream kinase activation. Analysis of the model shows parameter sensitivities that strongly depend on the present phase of activation. Analysis further highlights robustness to feedback parameters, analogous to engineered systems. The model is used to analyze potential regulatory mechanisms of heat shock protein 70, known to protect cells against stroke.;The second part of the dissertation develops new computational tools for sensitivity analysis of stochastic models of biochemical networks. Sensitivity analysis studies the effects of parameter perturbations on system outputs. This can be used to identify important reactions in complex signaling networks. Sensitivity analysis in stochastic models of biological systems is limited due to high computational costs needed for many Monte Carlo simulations. The development of two new efficient stochastic sensitivity methods that significantly reduce these costs — the common reaction path method for finite parameter perturbations, and the regularized pathwise derivative method for infinitesimal perturbations — is presented. Both methods exploit the random time change representation of stochastic models to reduce variance of Monte Carlo estimates. The numerical algorithms presented allow straightforward implementation of the methods. Computational speedups of several orders of magnitude over existing methods are demonstrated for example problems, permitting efficient sensitivity analysis of stochastic biochemical reaction networks.
机译:本文针对与计算系统生物学相关的两个主题。论文的第一部分是寻找缺血性中风的有效治疗方法。缺血是指血液供应不足,会引发一系列复杂的细胞信号通路,最终决定脑细胞存活还是死亡。小胶质细胞-脑中的固有免疫细胞-在决定中风后的细胞命运方面起着重要作用。一个特别重要的途径涉及转录因子核因子κB(NF-κB)的激活,该因子控制许多炎症和细胞死亡相关基因的表达。建立确定性模型以定量描述小胶质细胞中反馈调节的NF-κB信号通路,这是由于先前发布的模型无法正确捕获从小胶质细胞的实验数据集中观察到的动力学而引起的。新模型结合了先前未建模的抑制剂降解动力学和上游激酶激活的修饰动力学。对模型的分析表明,参数灵敏度在很大程度上取决于激活的当前阶段。分析进一步强调了类似于工程系统的反馈参数的鲁棒性。该模型用于分析热休克蛋白70的潜在调控机制,已知该热休克蛋白70保护细胞免于中风。论文的第二部分开发了新的计算工具,用于生化网络随机模型的敏感性分析。灵敏度分析研究参数摄动对系统输出的影响。这可用于识别复杂信令网络中的重要反应。由于许多蒙特卡洛模拟需要大量的计算成本,因此生物系统随机模型中的灵敏度分析受到限制。提出了两种新的有效的随机灵敏度方法的开发方法,这些方法可显着降低这些成本:用于有限参数扰动的通用反应路径方法,以及用于无穷微扰动的正则化路径导数方法。两种方法都利用随机模型的随机时间变化表示来减少蒙特卡洛估计的方差。提出的数值算法允许方法的直接实现。例如问题,证明了比现有方法快几个数量级的计算速度,从而可以对随机生化反应网络进行有效的灵敏度分析。

著录项

  • 作者

    Sheppard, Patrick William.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号