首页> 外文学位 >Wave-particle interactions in the solar wind and solar flares.
【24h】

Wave-particle interactions in the solar wind and solar flares.

机译:太阳风和太阳耀斑中的波粒相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Resonant interactions between particles and plasma waves play an important role in both the solar wind and solar flares. The dynamics of plasma turbulence in these settings controls the strength of the interactions, by determining the amplitudes of the small-scale electromagnetic fluctuations that have the largest effect on the particles. Because turbulence and wave-particle interactions are so closely inter-related, it is essential to study them together. Although resonant interactions in turbulent plasmas have been studied extensively, most previous studies have employed highly simplified assumptions about the wave power spectra and/or particle velocity distributions, for example, taking the wave power spectra to be isotropic, or taking all the wavevectors to be parallel to the background magnetic field. In this work, we investigate resonant interactions between particles and weakly turbulent waves in the more realistic, anisotropic, two-dimensional wavenumber and particle-velocity space. The quasilinear theory is adopted for the resonant interactions and weak turbulence theory is used to model the wave turbulence. For simplicity, we assume a homogenous plasma. In the first part of this work, we present new numerical results on resonant cyclotron interactions between protons and oblique Alfven/Ion-cyclotron waves in collisionless plasmas. We find that if some mechanism generates oblique high-frequency A/IC waves, then these waves initially make the proton velocity distribution function so anisotropic that the plasma becomes unstable to parallel waves. Parallel waves are then amplified to the point that they dominate the wave energy at the large wave numbers at which the waves resonate with protons. We show that these processes allow oblique A/IC waves to be more effective at heating protons than parallel A/IC waves. In the second part of this work, we present new numerical results on the stochastic electron acceleration in solar flares by weakly turbulent fast magnetosonic waves ("fast waves"). For this work, we assume that large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and that fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies upon the small-wavelength waves produced by the turbulent cascade. We first investigate the effects of wave escape using the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We then investigate the effects of plasma parameters on the acceleration and find that the electron distribution function fe develops a power-law-like non-thermal tail within a restricted range of energies E ∈ ( Ent, Emax). We obtain approximate analytic expressions for Ent and E max that describe how these minimum and maximum energies depend upon plasma parameters such as the electron temperature and number density. We compare our results to previous studies that assume that wave power spectrum Fk and fe are isotropic and use our analysis to explain the observed hard x-ray spectrum seen in the June 27, 1980 flare. In our numerical simulations, the electron energy spectra are softer (steeper) than in models with isotropic Fk and fe and closer to the values inferred from observations of solar flares.
机译:粒子与等离子波之间的共振相互作用在太阳风和太阳耀斑中都起着重要作用。在这些设置中,等离子体湍流的动力学通过确定对粒子影响最大的小规模电磁涨落的幅度来控制相互作用的强度。由于湍流和波粒相互作用非常紧密地相互关联,因此必须一起研究它们。尽管已广泛研究了湍流等离子体中的共振相互作用,但大多数先前的研究都采用了关于波功率谱和/或粒子速度分布的高度简化的假设,例如,将波功率谱设为各向同性,或将所有波矢量设为与背景磁场平行。在这项工作中,我们研究了在更现实,各向异性,二维波数和粒子速度空间中粒子与弱湍流之间的共振相互作用。共振相互作用采用准线性理论,而波浪湍流则采用弱湍流理论。为简单起见,我们假设均质等离子体。在这项工作的第一部分中,我们提出了质子与无碰撞等离子体中的倾斜Alfven /离子回旋加速器波之间的共振回旋加速器相互作用的新数值结果。我们发现,如果某种机制产生了倾斜的高频A / IC波,那么这些波最初将使质子速度分布函数具有各向异性,从而使等离子体对平行波变得不稳定。然后,平行波被放大到这样的程度:它们在大波数处控制波能量,在大波数处,波与质子发生共振。我们表明,这些过程允许倾斜的A / IC波在加热质子上比平行的A / IC波更有效。在这项工作的第二部分中,我们给出了关于太阳耀斑中由弱湍流快速磁声波(“快速波”)引起的随机电子加速度的新数值结果。对于这项工作,我们假设由磁重连触发的大规模流动会激发大波长的快波,然后快波的能量会从大波长级联到小波长。大波长快波对电子的加速作用较弱,因此该模型依赖于湍流级联产生的小波长波。我们首先使用弱湍流理论中的快速波的波动力学方程研究波逃逸的影响,并辅以均匀的波损耗项。我们发现,大波长快波的振幅必须超过最小阈值,以使很大一部分波能在波离开加速区域之前级联为小波长。然后,我们研究了等离子体参数对加速度的影响,发现电子分布函数fe在能量E∈(Ent,Emax)的受限范围内发展出类似于幂律的非热尾。我们获得了Ent和E max的近似解析表达式,这些表达式描述了这些最小和最大能量如何取决于等离子体参数,例如电子温度和数密度。我们将我们的结果与假定波功率谱Fk和fe是各向同性的以前的研究进行比较,并使用我们的分析解释在1980年6月27日的耀斑中观察到的硬X射线谱。在我们的数值模拟中,电子能谱比具有各向同性Fk和fe的模型更软(更陡峭),并且更接近于从太阳耀斑观察得出的值。

著录项

  • 作者

    Pongkitiwanichakul, Peera.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Alternative Energy.;Physics Elementary Particles and High Energy.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号