首页> 外文学位 >Aberration Correction in Digital Holography.
【24h】

Aberration Correction in Digital Holography.

机译:数字全息术中的像差校正。

获取原文
获取原文并翻译 | 示例

摘要

Phase aberrations due to atmospheric turbulence, experimental conditions or the imaging system itself can severely limit the resolution of an image. Phase aberrations can be spatially dependent, meaning that a linear, space-invariant transfer function cannot fully correct for all the phase errors across the field-of-view. One can use digital holography to access the complex-valued optical field from a laser-illuminated object after detecting the intensity interference between object and reference beams. Then one can digitally apply phase corrections to the field and propagate that field to the object plane to form an image. In this work, we developed image sharpening approaches to the correction of phase aberrations in digital holography. Image sharpening algorithms employ a nonlinear optimization routine to sense and compensate the phase aberrations to form a fine-resolution reconstructed image. In this thesis, we examined phase correction for two specific applications: imaging through multiple phase screens and synthetic-aperture digital holography. In both cases, our work concentrated on numerical simulation, algorithm development, and implementation of laboratory experiments.;For imaging through phase screens, we developed a modified sharpness metric which preserves the space-bandwidth product upon propagation to prevent oversharpening the image. We successfully demonstrated successful image reconstructions through multiple phase screens in numerical simulation for two and three phase screens and in a laboratory experiment for two phase screens, simulating space-variant aberrating media such as volume atmospheric turbulence.;Synthetic aperture digital holography (SADH) takes a collection of individual translated holographic frames and mosaics them to form a larger aperture. This increased aperture size results in greatly increased resolution (if not degraded by phase aberrations). We developed multiple approaches to aberration correction in SADH. We demonstrated the use of slope measurements between hologram sub-apertures with a non-iterative modal reconstructor to correct lower-order phase errors. Using an angular spectrum propagation technique with an image sharpening approach, we have demonstrated higher-order aberration correction and diffraction-limited resolution for a 12,000 by 18,000 pixel synthetic aperture. Finally, using an approximate Fresnel-like propagator in combination with an image sharpening algorithm, we demonstrated high-resolution, nonparaxial imaging over a region-of-interest for a 32,768 by 32,768 pixel (full gigapixel) synthetic aperture.
机译:由于大气湍流,实验条件或成像系统本身造成的相差会严重限制图像的分辨率。相位像差可能与空间有关,这意味着线性,空间不变的传递函数不能完全校正整个视场中的所有相位误差。在检测到物体和参考光束之间的强度干涉后,可以使用数字全息术来访问激光照射物体的复数值光场。然后,可以对场进行数字校正,然后将该场传播到物平面以形成图像。在这项工作中,我们开发了图像锐化方法来校正数字全息术中的相差。图像锐化算法采用非线性优化例程来感测和补偿相差,以形成高分辨率的重建图像。在本文中,我们研究了两种特定应用的相位校正:通过多相屏幕成像和合成孔径数字全息术。在这两种情况下,我们的工作都集中在数值模拟,算法开发和实验室实验的实施上。对于通过相屏进行成像,我们开发了一种改进的清晰度度量,该度量在传播时保留了空间带宽乘积,以防止图像过分锐化。我们成功地通过多相屏成功地展示了成功的图像重建,包括两相屏和三相屏的数值模拟以及两相屏的实验室实验,它们模拟了时变像差介质(例如体积大气湍流)。合成孔径数字全息(SADH)需要单独翻译的全息图框的集合,并将它们镶嵌起来以形成更大的光圈。增大的孔径会大大提高分辨率(如果不因相差而降低分辨率)。我们开发了多种方法来校正SADH中的像差。我们演示了使用非迭代模态重建器在全息子光圈之间进行斜率测量以校正低阶相位误差。使用带有图像锐化方法的角谱传播技术,我们已经证明了12,000 x 18,000像素合成孔径的高阶像差校正和衍射极限分辨率。最后,结合使用近似菲涅耳的传播器和图像锐化算法,我们展示了感兴趣区域上的高分辨率,非旁轴成像,合成孔径为32,768 x 32,768像素(全千兆像素)。

著录项

  • 作者

    Tippie, Abbie E.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号