首页> 外文学位 >Numerical methods for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection.
【24h】

Numerical methods for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection.

机译:模拟多相电动流体流动的数值方法及其在液体燃料喷射中的应用。

获取原文
获取原文并翻译 | 示例

摘要

One approach to small-scale fuel injection is to capitalize upon the benefits of electrohydrodynamics (EHD) and enhance fuel atomization. There are many potential advantages to EHD aided atomization for combustion, such as smaller droplets, wider spray cone, and the ability to control and tune the spray for improved performance. Electrohydrodynamic flows and sprays have drawn increasing interest in recent years, yet key questions regarding the complex interactions among electrostatic charge, electric fields, and the dynamics of atomizing liquids remain unanswered. The complex, multi-physics and multi-scale nature of EHD atomization processes limits both experimental and computational explorations.;In this work, novel, numerically sharp methods are developed and subsequently employed in high-fidelity direct numerical simulations of electrically charged liquid hydrocarbon jets. The level set approach is combined with the ghost fluid method (GFM) to accurately simulate primary atomization phenomena for this class of flows. Surface effects at the phase interface as well as bulk dynamics are modeled in an accurate and robust manner. The new methods are implemented within a conservative finite difference scheme of high-order accuracy that employs state-of-the-art interface transport techniques. This approach, validated using several cases with exact analytic solutions, demonstrates significant improvements in accuracy and efficiency compared to previous methods used for EHD simulations. As a final validation, the computational scheme is applied in direct numerical simulation of a charged and uncharged liquid kerosene jet. Then, a detailed numerical study of EHD atomization is conducted for a range of relevant dimensionless parameters to predict the onset of liquid break-up, identify characteristic modes of liquid disintegration, and report elucidating statistics such as drop size and spray dispersion. Because the methodologies developed and validated in this work open new, simulations-based avenues of exploration within a broader category of electrohydrodynamics, some perspectives on extensions or continuations of this work are offered in conclusion.
机译:小规模燃料喷射的一种方法是利用电动流体力学(EHD)的优势并增强燃料雾化。 EHD辅助雾化具有许多潜在的燃烧优势,例如较小的液滴,较宽的喷雾锥以及控制和调整喷雾以改善性能的能力。近年来,电动流体流动和喷雾引起了越来越多的兴趣,但是关于静电荷,电场和雾化液体动力学之间复杂相互作用的关键问题仍未得到解答。 EHD雾化过程的复杂,多物理场和多尺度性质限制了实验和计算探索。在这项工作中,开发了新颖的,数值清晰的方法,随后将其用于带电的液态烃射流的高保真度直接数值模拟。 。水平集方法与幻影流体方法(GFM)相结合,可以准确地模拟此类流的主要雾化现象。在相界面处的表面效应以及整体动力学均以准确而可靠的方式建模。新方法是在采用最新接口传输技术的高阶精度的保守有限差分方案中实现的。这种方法经过多次案例分析并采用精确的分析解决方案进行了验证,与以往EHD仿真所采用的方法相比,该方法在准确性和效率上都有了显着提高。作为最终验证,该计算方案被应用于带电和不带电煤油射流的直接数值模拟。然后,对一系列相关的无量纲参数进行EHD雾化的详细数值研究,以预测液体破裂的发生,识别液体崩解的特征模式,并报告阐明的统计数据,例如液滴大小和喷雾分散度。因为在这项工作中开发和验证的方法在更宽泛的电动流体力学范畴内开辟了新的,基于模拟的探索途径,所以最后提供了有关这项工作的扩展或继续的一些观点。

著录项

  • 作者

    Van Poppel, Bret P.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.;Physics Fluid and Plasma.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号