首页> 外文学位 >Multi-layer methods for quantum chemistry in the condensed phase: Combining density functional theory, molecular mechanics, and continuum solvation models.
【24h】

Multi-layer methods for quantum chemistry in the condensed phase: Combining density functional theory, molecular mechanics, and continuum solvation models.

机译:凝聚态量子化学的多层方法:结合密度泛函理论,分子力学和连续介质溶剂化模型。

获取原文
获取原文并翻译 | 示例

摘要

We discuss the development and application of a number of theoretical physical models focused on improving our understanding of quantum chemical phenomena in condensed phase environments, especially aqueous solutions. The large number of atoms and molecules present in such systems precludes the application of the most advanced and accurate quantum chemistry theories available due to their exponential growth of required computational power with respect to the number of electrons in a system. As a feasible alternative, we opt to take a "multi-layer" approach, wherein the full chemical system is partitioned into different layers treated with varying levels of approximation, circumventing the exponential scaling computational cost. How this partitioning is performed and applied appropriately is the principal emphasis of this work.;Our main chemical system of interest is aqueous DNA and its excited electronic states. We examine applications of mixing quantum mechanics and classical molecular mechanics models, a multi-layer approach known as "QM/MM," to simulate the electronic absorption spectrum of aqueous uracil as computed with Time-Dependent Density Functional Theory (TDDFT). We encounter a major issue of spurious charge-transfer (CT) states in TDDFT even at small uracil--water clusters. Applying Long-Range Corrected TDDFT (LRC-TDDFT), however, alleviates this issue and allows us to investigate the absorption spectrum of aqueous DNA systems of up to as much as 8 nucleobases, providing some important clues to the initial dynamics of aqueous DNA excited by ultraviolet light and its possible ensuing damage. Then, to overcome certain computational limitations in modeling solvent by QM/MM alone, we turn to the methodology of polarizable continuum models (PCMs), which can be added on top of the QM/MM multi-layer approach as an "implicit" solvent model (in the sense that the average solvent charge density is approximated as a dielectric medium). We find that several extant PCM techniques are prone to numerical instabilities and discontinuous potential energy surfaces, and we propose ways to overcome such. Furthermore, we develop insights into the theory of PCM that yield an entirely new PCM for modeling the electrostatic effects of salty solutions. The culmination of our efforts is a cutting-edge QM/MM/PCM multi-layer approach for modeling quantum chemistry in the condensed phase.
机译:我们讨论了许多理论物理模型的开发和应用,这些模型的重点是提高我们对凝聚相环境(尤其是水溶液)中量子化学现象的理解。由于相对于系统中电子的数量,所需的计算能力呈指数增长,因此存在于此类系统中的原子和分子数量众多,因而无法应用最先进,最精确的量子化学理论。作为一种可行的替代方法,我们选择采用“多层”方法,其中将整个化学系统划分为不同的层,并使用不同的近似水平进行处理,从而避免了按比例缩放的计算成本。这项工作的主要重点是如何进行这种划分并适当地应用它。我们感兴趣的主要化学系统是水性DNA及其激发的电子态。我们研究了混合量子力学和经典分子力学模型(一种称为“ QM / MM”的多层方法)的应用,以模拟由时变密度泛函理论(TDDFT)计算的尿嘧啶水溶液的电子吸收谱。即使在小型尿嘧啶-水簇中,我们在TDDFT中也遇到了一个主要问题,即杂散电荷转移(CT)状态。但是,应用远程校正的TDDFT(LRC-TDDFT)可以缓解此问题,使我们能够研究多达8个核碱基的水性DNA系统的吸收光谱,从而为激发的水性DNA的初始动力学提供了一些重要线索紫外线及其可能造成的损坏。然后,为了克服仅使用QM / MM建模溶剂时的某些计算限制,我们转向可极化连续体模型(PCM)的方法,可以将其作为“隐式”溶剂添加到QM / MM多层方法的顶部模型(在某种意义上,平均溶剂电荷密度近似为电介质)。我们发现几种现存的PCM技术易于出现数值不稳定性和不连续的势能面,因此我们提出了克服这些问题的方法。此外,我们对PCM理论有了更深入的了解,这些理论产生了一个全新的PCM,用于建模咸溶液的静电效应。我们的努力最终达到了一种先进的QM / MM / PCM多层方法,用于在凝聚相中模拟量子化学。

著录项

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Molecular.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 367 p.
  • 总页数 367
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号