首页> 外文学位 >Cell Adhesion and Migration on NDGA Cross-Linked Fibrillar Collagen Matrices for Tendon Tissue Engineering.
【24h】

Cell Adhesion and Migration on NDGA Cross-Linked Fibrillar Collagen Matrices for Tendon Tissue Engineering.

机译:肌腱组织工程用NDGA交联原纤维胶原蛋白基质上的细胞粘附和迁移。

获取原文
获取原文并翻译 | 示例

摘要

Tendons, essential tissues that connect muscles to bones, are susceptible to rupture/degeneration due to their continuous use for enabling movement. Often surgical intervention is required to repair the tendon; relieving the pain and fixing the limited mobility that occurs from the damage. Unfortunately, post-surgery immobilization techniques required to restore tendon properties frequently lead to scar formation and reduced tendon range of motion. Our ultimate goal is to create an optimal tendon prosthetic that can stabilize the damaged muscle-bone connection and then be remodeled by resident cells from the surrounding tissues over time to ensure long-term function. To achieve this, we must first understand how cells respond to and interact with candidate replacement materials.;The most abundant extracellular matrix (ECM) protein found in the body, collagen, is chosen as the replacement material because it makes up the majority of tendon dry mass and it can be remodeled by cell-based homeostatic processes. Previous studies found that Di-catechol nordihydroguaiaretic acid (NDGA) cross-linked fibers have greater mechanical strength than native tendons; and for this reason this biomaterial could be used for tendon replacement.;This work focuses on investigating the behavior of fibroblasts on NDGA cross-linked and uncross-linked collagen samples to determine if cross-linking disrupts the cell binding sites affecting cell spreading, attachment, and migration. The in-vitro platform was designed by plasma treating 25 mm diameter cover slips that were exposed to 3-aminopropyl-trimetoxysilane/toluene and glutaraldehyde/ethanol solutions. The collagen solution was then dispensed onto the glutaraldehyde-coated cover slip and incubated for fibrillar collagen matrix formation. The collagen matrices were submerged in NDGA cross-linking solution for 24 hours to ensure the surface was completely cross-linked. Collagen films were made by allowing the uncross-linked gels to dry overnight before and after NDGA treatment, resulting in a more compacted structure.;A spinning disk device was employed to quantify the ability of cells to remain attached to the collagen samples when exposed to hydrodynamic forces. To avoid any cell-cell interaction and focus on cell-surface interactions, 50--100 cells/mm2 were seeded carefully on each sample. Temporal studies demonstrated that cell adhesion strength and spreading area reached steady-state by 4 hr. Adhesion and spreading studies along with migration experiments demonstrated that NDGA treatment affects cellular behavior on films, partially reducing adhesion strength, migration, and spreading area. However, on the cross-linked gels which are less dense, the only change in cell behavior observed was in migration speed.;We hypothesize that these differences are due to the collapsing of the collagen films. This compaction suggests a less open organization and could be allowing the collagen fibers to form more inter-chain bonds as well as bonds with the small NDGA cross-linker; while NDGA treatment of the fully hydrated gels may rely more on NDGA polymerization to span the greater distance between collagen fibrils. From these results, we can determine that the chemical/physical masking of the adhesion sites by NDGA on collagen films affects cellular behavior more than the masking that occurs in the cross-linked gels. Although this study shows an effect in cell behavior on the cross-linked films, it also demonstrates that cells can adhere and migrate to this NDGA biomaterial supporting the idea that this biomaterial can be utilized for tendon replacement.
机译:肌腱是将肌肉与骨骼连接起来的重要组织,由于会持续使用以使其运动,因此容易破裂/退化。经常需要外科手术来修复肌腱。减轻疼痛并修复因损伤而造成的活动受限。不幸的是,恢复肌腱特性所需的手术后固定技术经常导致疤痕形成和肌腱活动范围减小。我们的最终目标是创建一种最佳的肌腱假体,该假体可以稳定受损的肌肉-骨骼连接,然后随时间推移被周围组织中的常驻细胞进行重塑,以确保长期功能。为此,我们必须首先了解细胞如何与候选替代材料发生反应并与之相互作用。;选择体内发现的最丰富的细胞外基质蛋白(ECM)胶原蛋白作为替代材料,因为它构成了大部分肌腱干物质,可以通过基于细胞的稳态过程进行重塑。先前的研究发现,二邻苯二酚去甲二氢愈创木酸(NDGA)交联纤维比天然肌腱具有更高的机械强度。正是由于这个原因,这种生物材料可用于替换肌腱。这项工作的重点是研究成纤维细胞在NDGA交联和未交联的胶原蛋白样品上的行为,以确定交联是否会破坏影响细胞扩散,附着的细胞结合位点以及迁移。通过对暴露于3-氨丙基-三甲氧基硅烷/甲苯和戊二醛/乙醇溶液中的25毫米直径盖玻片进行等离子体处理,设计了体外平台。然后将胶原蛋白溶液分配到戊二醛涂层的盖玻片上,并孵育以形成原纤维胶原蛋白基质。将胶原蛋白基质浸入NDGA交联溶液中24小时,以确保表面完全交联。通过使未交联的凝胶在NDGA处理之前和之后干燥过夜来制成胶原蛋白膜,从而得到更致密的结构。;使用旋转盘装置来量化细胞暴露于胶原蛋白样品后保持附着在胶原蛋白样品上的能力。流体动力。为了避免任何细胞间相互作用,并专注于细胞表面相互作用,将50--100个细胞/ mm2小心地接种在每个样品上。时间研究表明,细胞粘附强度和扩散面积在4小时后达到稳态。粘附力和铺展性研究以及迁移实验表明,NDGA处理会影响薄膜上的细胞行为,从而部分降低粘附强度,迁移率和铺展面积。然而,在密度较小的交联凝胶上,观察到的细胞行为的唯一变化是迁移速度。我们假设这些差异是由于胶原膜的塌陷所致。这种压实表明组织的开放性较弱,可能使胶原纤维形成更多的链间键以及与较小的NDGA交联剂的键;而NDGA处理完全水合的凝胶可能更多地依赖NDGA聚合来跨越胶原纤维之间更大的距离。从这些结果,我们可以确定,NDGA对胶原膜的粘附位点的化学/物理掩蔽对细胞行为的影响大于在交联凝胶中发生的掩蔽。尽管这项研究显示了交联膜对细胞行为的影响,但它也表明细胞可以粘附并迁移至NDGA生物材料,从而支持了这种生物材料可用于肌腱置换的想法。

著录项

  • 作者

    Rioja, Ana Ysabel.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Biomedical engineering.
  • 学位 M.S.B.E.
  • 年度 2012
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号