首页> 外文学位 >State Variables in Granular Materials: an Investigation of Volume and Stress Fluctuations.
【24h】

State Variables in Granular Materials: an Investigation of Volume and Stress Fluctuations.

机译:颗粒材料中的状态变量:体积和应力波动的研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is devoted to the investigation of granular materials near the transition between solid-like and fluid-like behavior. We aim to understand the collective dynamics in dense driven systems, the role of geometry in the volume fluctuations, and the equilibration of granular temperatures. The experiments are conducted using two-dimensional materials composed of a single layer of disks which are supported by a thin layer of air. In driven granular systems, particle dynamics have commonly been quantified by the diffusion, even though this measure discards information about collective particle motion known to be important in dense systems. We draw inspiration from fluid mixing, and utilize the braid entropy, which provides a direct topological measure of the entanglement of particle trajectories and has been used to quantify mixing. We find that as the density or pressure increases, the dynamics slow and the braiding factor exhibits intermittency signifying a loss of chaos in the trajectories on the experimental timescale. In the same system, we experimentally measure the local volume fraction distribution, which we find to be independent of the boundary condition and the inter-particle friction coefficient. We extend the granocentric model to account for randomness in particle separations, which are important in dynamic systems. This model is in quantitative agreement with experimentally-measured local volume fraction distributions, indicating that geometry plays a central role in determining the magnitude of local volume fluctuations. Finally, we test whether the zeroth law (temperature-equilibration) of several ensemble-based granular temperatures is satisfied by two granular systems in contact. We calculate the compactivity and angoricity which are the temperature-like quantities associated with the volume and stress ensembles; we observe the compactivity does not satisfy the zeroth law test, while the angoricity does equilibrate between the two systems.
机译:本文致力于研究颗粒状材料在固体行为和流体行为之间的过渡附近。我们旨在了解密集驱动系统中的集体动力学,几何在体积波动中的作用以及颗粒温度的平衡。实验是使用由单层磁盘组成的二维材料进行的,这些材料由薄薄的空气层支撑。在驱动的颗粒系统中,粒子动力学通常通过扩散来量化,即使此措施会丢弃有关已知在密集系统中很重要的集体粒子运动的信息。我们从流体混合中汲取了灵感,并利用了编织熵,该熵提供了粒子轨迹缠结的直接拓扑度量,并已用于量化混合。我们发现,随着密度或压力的增加,动力学会变慢,编织因子会表现出间歇性,这表明在实验时间尺度上轨迹的混沌性消失了。在同一系统中,我们通过实验测量了局部体积分数分布,发现该分布与边界条件和粒子间摩擦系数无关。我们扩展了以颗粒为中心的模型,以考虑颗粒分离中的随机性,这在动态系统中很重要。该模型与实验测量的局部体积分数分布在数量上一致,表明几何形状在确定局部体积波动的大小中起着核心作用。最后,我们测试了两个接触的颗粒系统是否满足基于整体的颗粒温度的零定律(温度平衡)。我们计算压实度和算术性,它们是与体积和应力集合相关的类似温度的量。我们观察到压实度不满足零定律检验,而两种系统之间的算术确实平衡。

著录项

  • 作者

    Puckett, James Graham.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Physics General.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号