首页> 外文学位 >Designing Low Power and High Performance Network-on-Chip Communication Architectures for Nanometer SoCs.
【24h】

Designing Low Power and High Performance Network-on-Chip Communication Architectures for Nanometer SoCs.

机译:为纳米SoC设计低功耗和高性能的片上网络通信架构。

获取原文
获取原文并翻译 | 示例

摘要

Network-on-Chip (NoC) communication architectures have been recognized as the most scalable and efficient solution for on chip communication challenges in the multi-core era. Diverse demanding applications coupled with the ability to integrate billions of transistors on a single chip are some of the main driving forces behind ever increasing performance requirements towards the level that requires several tens to over a hundred of cores per chip. Small scale multicore processors so far have been a great commercial success and found applicability in many applications. Systems using multi-core processors are now the norm rather than the exception.;As the number of cores or components integrated into a single system is keep increasing, the design of on-chip communication architecture is becoming more challenging. The increasing number of components in a system translates into more inter-component communication that must be handled by the on-chip communication infrastructure. Future system-on-chip (SoC) designs require predictable, scalable and reusable on-chip communication architectures to increase reliability and productivity. Current bus-based interconnect architectures are inherently non-scalable, less adaptable for reuse and their reliability decreases with system size.;NoC communication guarantees scalability, high-speed, high-bandwidth communication with minimal wiring overhead and routing issues. NoCs are layered, packet-based on-chip communication networks integrated onto a single chip. NoC consists of resources and switches that are directly connected in a way that resources are able to communicate with each other by sending messages. The proficiency of a NoC to meet its design goals and budget requirements for the target application depends on its design. Often, these design goals conflict and trade-off with each other. The multi-dimensional pull of design constraints in addition to technology scaling complicates the process of NoC design in many aspects, as they are expected to support high performance and reliability along with low cost, smaller area, less time-to-market and lower power consumption. To aid in the process, this research presents design methodologies to achieve low power and high performance NoC communication architectures for nanometer SoCs.
机译:片上网络(NoC)通信体系结构已被公认为是应对多核时代片上通信挑战的最可扩展和最有效的解决方案。各种苛刻的应用程序以及在单个芯片上集成数十亿个晶体管的能力,是不断增长的性能要求(达到每个芯片需要几十个到一百多个核)这一水平背后的一些主要驱动力。迄今为止,小型多核处理器已经取得了巨大的商业成功,并在许多应用中得到了应用。使用多核处理器的系统现在已成为规范,而不是例外。随着集成到单个系统中的核或组件的数量不断增加,片上通信体系结构的设计变得越来越具有挑战性。系统中越来越多的组件转化为更多的组件间通信,必须由片上通信基础架构来处理。未来的片上系统(SoC)设计需要可预测,可扩展和可重用的片上通信体系结构,以提高可靠性和生产率。当前基于总线的互连体系结构本质上是不可扩展的,难以再利用,并且其可靠性随着系统规模的降低而降低。NoC通信可确保可扩展性,高速,高带宽通信,而布线开销和布线问题最少。 NoC是集成在单个芯片上的分层,基于数据包的片上通信网络。 NoC由资源和交换机组成,这些资源和交换机以资源能够通过发送消息相互通信的方式直接连接。 NoC满足其设计目标和目标应用程序预算要求的能力取决于其设计。通常,这些设计目标相互冲突和权衡。除技术规模外,设计约束的多维拉动还使NoC设计过程复杂化,因为它们有望支持高性能和可靠性以及低成本,更小面积,缩短上市时间和更低功耗消费。为了帮助该过程,本研究提出了用于实现纳米SoC的低功耗和高性能NoC通信架构的设计方法。

著录项

  • 作者

    Reehal, Gursharan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号