首页> 外文学位 >The Evolution of Eastern Himalayan deformation: Geometry and kinematics of the Himalayan Fold-thrust Belt, Eastern and Central Bhutan.
【24h】

The Evolution of Eastern Himalayan deformation: Geometry and kinematics of the Himalayan Fold-thrust Belt, Eastern and Central Bhutan.

机译:东部喜马拉雅变形的演变:不丹东部和中部喜马拉雅褶皱冲断带的几何学和运动学。

获取原文
获取原文并翻译 | 示例

摘要

Extensive geologic mapping in the Himalayan kingdom of Bhutan, in conjunction with U-Pb zircon ages, stratigraphic columns, mineral assemblages, balanced cross-sections, and microstructural and strain analyses, have allowed us to: 1) define the tectonostratigraphy of the frontal portion of the orogen, 2) quantify the magnitude of ductile flow within Greater Himalayan (GH) rocks, and 3) estimate the crustal shortening accommodated by the orogen. We also: 4) constrain deformation temperatures and internal strain magnitudes in Himalayan thrust sheets, and 5) present a new geologic map of Bhutan.;We divide Lesser Himalayan (LH) rocks into six map units, which range between Paleoproterozoic and Permian in age. LH deposition age ranges indicate that: 1) two unconformities identified in northwest India continue into the eastern Himalaya, and 2) there was time-equivalent deposition of LH units proximal to India and GH and Tethyan Himalayan (TH) units distal to India.;The distribution of metamorphic mineral assemblages and interfingering of distinct lithologies at the GH-TH contact indicate that rocks mapped as TH are in depositional contact above GH rocks in central Bhutan. Map geometries limit slip on the South Tibetan detachment to ∼20 km, and strain analysis indicates ∼23-34 km of top-to-the-north shear distributed through the GH-TH section. These data indicate that the magnitude of channel flow in central Bhutan is only ∼12-15% of the total amount of mass added to the system through shortening (359 km minimum).;Balanced cross-sections depict the geometry of deformation, and illustrate two LH duplex systems and structurally-lower and higher GH sections. Cross-section retro-deformation indicates at least 344-405 km of crustal shortening (70-75%). Shortening estimates across the orogen broadly mimic the arc-normal width of the Tibetan Plateau, indicating the plateau borders likely correspond with the leading edge of subducted Indian lower crust at depth.;The LH zone displays an inverted deformation temperature gradient, attributed primarily to stacking of foreland thrust sheets. Frontal thrust sheets exhibit layer-parallel shortening (LPS) strain, and all other thrust sheets exhibit layer-normal flattening (LNF) strain. We propose that LPS strain developed foreland-ward of the deformation front, and that LNF strain resulted from tectonic loading, and preceded thrust imbrication.
机译:不丹的喜马拉雅王国广泛的地质制图,结合U-Pb锆石年龄,地层柱,矿物组合,平衡的横截面以及显微结构和应变分析,使我们能够:1)定义正面部分的构造地层学(2)量化大喜马拉雅(GH)岩石内韧性流的大小,以及(3)估算由该造山带适应的地壳缩短。我们还:4)限制喜马拉雅逆冲板中的变形温度和内部应变幅度,以及5)绘制不丹的新地质图。;我们将小喜马拉雅(LH)岩石划分为六个地图单位,其年龄范围在古元古代和二叠纪之间。 LH沉积年龄范围表明:1)在印度西北部发现的两个不整合面持续到喜马拉雅东部,以及2)在印度近端的LH单元和印度远端的GH和Tethyan喜马拉雅(TH)单元存在时间等效的沉积。 GH-TH接触面的变质矿物组合分布和不同岩性的互指表明,映射为TH的岩石处于不丹中部GH岩石上方的沉积接触中。地图的几何形状将藏南分离带的滑移限制在约20 km,应变分析表明,从GH-TH断面分布的从上到北的剪切力约为23-34 km。这些数据表明,不丹中部的河道流量仅为通过缩短增加到系统中的总质量的约12-15%(最小359 km).;平衡的横截面描绘了变形的几何形状,并说明了两个LH双工系统以及结构上较低和较高的GH部分。横截面逆向变形表明地壳缩短至少344-405 km(70-75%)。整个造山带的缩短估算值大致模拟了青藏高原的弧线法线宽度,表明高原边界可能与俯冲的印度下地壳深处的前缘相对应; LH带显示出一个倒置的变形温度梯度,主要是由于堆积前陆冲断层。正面推力板表现出平行层缩短(LPS)应变,所有其他推力板表现出正常层矫正(LNF)应变。我们建议LPS应变发展到变形前沿的前陆,而LNF应变是由于构造载荷而产生的,并且先于冲动成因。

著录项

  • 作者

    Long, Sean Patrick.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 500 p.
  • 总页数 500
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号